Đề thi vào 10 môn Toán Phú Thọ năm 2017-2018
Chia sẻ bởi Nguyễn Nhật Nam |
Ngày 13/10/2018 |
46
Chia sẻ tài liệu: Đề thi vào 10 môn Toán Phú Thọ năm 2017-2018 thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO
PHÚ THỌ
KỲ THI TUYỂN SINH
VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG
NĂM HỌC 2017 – 2018
Môn: TOÁN
Thời gian làm bài: 120 phút, không kể thời gian giao đề
Đề thi có 01 trang
Câu 1 (1,5 điểm)
a) Giải phương trình: .
b) Giải hệ phương trình: .
Câu 2 (2,5 điểm)
Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình và hai điểm A, B thuộc (P) có hoành độ lần lượt là .
a) Tìm tọa độ A, B.
b) Viết phương trình đường thẳng (d) đi qua hai điểm A,B.
c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).
Câu 3 (2,0 điểm)
Cho phương trình: (m là tham số).
a) Giải phương trình với .
b) Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện :
.
Câu 4 (3,0 điểm)
Cho tứ giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD ().
a) Chứng minh tứ giác AHIK nội tiếp đường tròn.
b) Chứng minh rằng IA.IC = IB.ID.
c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng.
d) Gọi S là diện tích tam giác ABD, S’ là diện tích tam giác HIK. Chứng minh rằng:
Câu 5 (1,0 điểm)
Giải phương trình : .
-------------- Hết--------------
Họ và tên thí sinh: ...................................................................... SBD: .................
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
PHÚ THỌ
KỲ THI TUYỂN SINH
VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG
NĂM HỌC 2017 – 2018
Môn: TOÁN
Thời gian làm bài: 120 phút, không kể thời gian giao đề
Đề thi có 01 trang
Câu 1 (1,5 điểm)
a) Giải phương trình: .
b) Giải hệ phương trình: .
Câu 2 (2,5 điểm)
Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình và hai điểm A, B thuộc (P) có hoành độ lần lượt là .
a) Tìm tọa độ A, B.
b) Viết phương trình đường thẳng (d) đi qua hai điểm A,B.
c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).
Câu 3 (2,0 điểm)
Cho phương trình: (m là tham số).
a) Giải phương trình với .
b) Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện :
.
Câu 4 (3,0 điểm)
Cho tứ giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD ().
a) Chứng minh tứ giác AHIK nội tiếp đường tròn.
b) Chứng minh rằng IA.IC = IB.ID.
c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng.
d) Gọi S là diện tích tam giác ABD, S’ là diện tích tam giác HIK. Chứng minh rằng:
Câu 5 (1,0 điểm)
Giải phương trình : .
-------------- Hết--------------
Họ và tên thí sinh: ...................................................................... SBD: .................
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Nhật Nam
Dung lượng: 57,00KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)