Đề thi thử vào 10

Chia sẻ bởi Mai Ngọc Lợi | Ngày 13/10/2018 | 45

Chia sẻ tài liệu: Đề thi thử vào 10 thuộc Đại số 9

Nội dung tài liệu:

ĐỀ THI THỬ VÀO LỚP 10 MÔN TOÁN
NĂM HỌC 2012 - 2013
Thời gian 120 phút



Câu 1: a) Cho hàm số y = x + 1. Tính giá trị của hàm số khi x = .
b) Tìm m để đường thẳng y = 2x – 1 và đường thẳng y = 3x + m cắt nhau tại một điểm nằm trên trục hoành.
Câu 2: a) Rút gọn biểu thức: A = 
với .
b) Giải phương trình: 
Câu 3: Cho hệ phương trình:  (1)
a) Giải hệ phương trình đã cho khi m = 1.
b) Tìm m để hệ (1) có nghiệm (x; y) thỏa mãn: x2 + y2 = 10.
Câu 4: Cho nửa đường tròn tâm O đường kính AB. Lấy điểm M thuộc đoạn thẳng OA, điểm N thuộc nửa đường tròn (O). Từ A và B vẽ các tiếp tuyến Ax và By. Đường thẳng qua N và vuông góc với NM cắt Ax, By thứ tự tại C và D.
a) Chứng minh ACNM và BDNM là các tứ giác nội tiếp đường tròn.
b) Chứng minh ∆ANB đồng dạng với ∆CMD.
c) Gọi I là giao điểm của AN và CM, K là giao điểm của BN và DM. Chứng minh IK //AB.
Câu 5: Chứng minh rằng: với a, b là các số dương.











Đáp án và biểu điểm
Câu 1: a) Thay x =  vào hàm số ta được:
y = .
b) Đường thẳng y = 2x – 1 cắt trục hoành tại điểm có hoành độ x = ; còn đường thẳng y = 3x + m cắt trục hoành tại điểm có hoành độ x = . Suy ra hai đường thẳng cắt nhau tại một điểm trên trục hoành .

Câu 2: a) A =

, với .
b) Điều kiện: x ≠ 3 và x ≠ - 2 (1).

x2 – 4x + 3 = 0. Giải ra ta được: x1 = 1 (thỏa mãn); x2 = 3 (loại do (1)).
Vậy phương trình đã cho có nghiệm duy nhất x = 1.
Câu 3: a) Thay m = 1 vào hệ đã cho ta được:
.
Vậy phương trình có nghiệm (1; 2).
b) Giải hệ đã cho theo m ta được:

Nghiệm của hệ đã cho thỏa mãn x2 + y2 = 10
m2 + (m + 1)2 = 10 2m2 + 2m – 9 = 0.
Giải ra ta được: .
Câu 4:
a) Tứ giác ACNM có: (gt) ( tínhchất tiếp tuyến).
ACNM là tứ giác nội tiếp đường tròn đường kính MC. Tương tự tứ giác BDNM nội tiếp đường tròn đường kính MD.
b) ∆ANB và ∆CMD có:
(do tứ giác BDNM nội tiếp)
(do tứ giác ACNM nội tiếp) ∆ANB ~ ∆CMD (g.g)

c) ∆ANB ~ ∆CMD= 900 (do là góc nội tiếp chắn nửa đường tròn (O)).
Suy ra  IMKN là tứ giác nội tiếp đường tròn đường kính IK (1).
Tứ giác ACNM nội tiếp (góc nội tiếp cùng chắn cung NC) (2).



Lại có: sđ) (3).
Từ (1), (2), (3) suy ra  IK // AB (đpcm).

Câu 5: Ta có: 
Áp dụng bất đẳng thức Cô-si cho các số dương ta được:

Từ (2) và (3) suy ra: 
Từ (1) và (4) suy ra:
. Dấu bằng xảy ra khi và chỉ khi a = b.


* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Mai Ngọc Lợi
Dung lượng: 126,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)