Đề thi thử vào 10
Chia sẻ bởi Nguyễn Đức Chính |
Ngày 13/10/2018 |
43
Chia sẻ tài liệu: Đề thi thử vào 10 thuộc Đại số 9
Nội dung tài liệu:
PHÒNG GD&ĐT BÌNH GIANG
ĐỀ THI THỬ TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2018 - 2019
MÔN: TOÁN
Thời gian làm bài: 120 phút
(Đề bài gồm 01 trang)
Câu 1 (2,0 điểm). Giải phương trình và hệ phương trình sau:
1) 2)
Câu 2 (2,0 điểm).
1) Cho , rút gọn biểu thức:
.
2) Tìm giá trị của m để ba đường thẳng: , và cùng đi qua một điểm.
Câu 3 (2,0 điểm).
1) Hai người cùng làm chung một công việc trong vòng 8 giờ thì xong. Nếu người thứ nhất làm 1 giờ 30 phút và người thứ hai làm tiếp 3 giờ thì được 25% công việc. Hỏi nếu làm riêng một mình thì mỗi người cần bao nhiêu thời gian để hoàn thành công việc.
2) Tìm m để đồ thị của hàm số (m là tham số) cắt trục tung tại điểm A, cắt trục hoành tại điểm B sao cho diện tích tam giác AOB bằng 6 (với O là gốc tọa độ).
Câu 4 (3,0 điểm).
Cho đường tròn (O) đường kính AB = 2R. Điểm C nằm giữa hai điểm A và B, vẽ đường tròn (I) đường kính CA và đường tròn (K) đường kính CB. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn (O) tại D và E. Đoạn thẳng DA cắt đường tròn (I) tại M, DB cắt đường tròn (K) tại N.
a) Chứng minh rằng: Bốn điểm C, M, D, N cùng thuộc một đường tròn.
b) Chứng minh rằng: MN là tiếp tuyến chung của đường tròn (I) và đường tròn (K).
c) Xác định vị trí điểm C trên đường kính AB sao cho tứ giác CMDN có diện tích lớn nhất.
Câu 5 (1,0 điểm). Cho hai số thực x, y thỏa mãn: và . Tìm giá trị nhỏ nhất của biểu thức: .
–––––––– Hết ––––––––
Họ tên học sinh:…………………………………Số báo danh:……………..……
Chữ kí giám thị 1: …………………… Chữ kí giám thị 2:………………………
PHÒNG GD&ĐT BÌNH GIANG
HƯỚNG DẪN, BIỂU ĐIỂM THI THỬ THPT
NĂM HỌC 2018 - 2019 MÔN TOÁN
(Đáp án gồm 4 trang)
Câu
Đáp án
Điểm
Câu 1
(2 điểm)
0,25
0,25
0,25
Vậy nghiệm của phương trình là
0,25
0,25
0,25
0,25
Vậy nghiệm của hệ phương trình là
0,25
Câu 2
(2 điểm)
1) Với , ta có:
0,25
0,25
0,25
0,25
2) Tọa độ giao điểm của hai đường thẳng: , là nghiệm của hệ phương trình:
0,25
Học sinh tìm hoành độ giao điểm sau đó tìm tung độ giao điểm cho điểm tối đa
0,25
Ba đường thẳng: , và cùng đi qua một điểm khi điểm thuộc đường thẳng Không có điểm thuộc đường thẳng Hoặc đường thẳng đi qua điểm không chấm phần này
0,25
. Vậy m = - 5
0,25
Câu 3
(2 điểm)
1) Gọi thời gian người thứ nhất làm riêng một mình xong công việc là x (giờ), thời gian người thứ hai làm riêng một mình xong công việc là y (giờ), điều kiện x > 8, y > 8.
Trong một giờ: người thứ nhất làm được (công việc), người thứ hai làm được (công việc), cả hai người cùng làm chung một công việc trong vòng 8 giờ thì xong nên ta có phương trình: (1)
Cả hai người cùng làm chung một công việc trong vòng 8 giờ thay bằng Theo bài ra ta có phương trình cho điểm tối đa
0,25
Đổi 1 giờ 30 phút = giờ. Do người thứ nhất làm 1 giờ 30 phút và người thứ hai làm tiếp 3 giờ thì được 25% công việc nên ta có phương trình: (2)
Từ (1) và (2) ta có hệ phương trình:
0,25
Đặt ta có hệ phương trình:
0,25
Từ đó suy ra (Thoả mãn)
Vậy thời gian người thứ nhất làm riêng một mình xong công
ĐỀ THI THỬ TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2018 - 2019
MÔN: TOÁN
Thời gian làm bài: 120 phút
(Đề bài gồm 01 trang)
Câu 1 (2,0 điểm). Giải phương trình và hệ phương trình sau:
1) 2)
Câu 2 (2,0 điểm).
1) Cho , rút gọn biểu thức:
.
2) Tìm giá trị của m để ba đường thẳng: , và cùng đi qua một điểm.
Câu 3 (2,0 điểm).
1) Hai người cùng làm chung một công việc trong vòng 8 giờ thì xong. Nếu người thứ nhất làm 1 giờ 30 phút và người thứ hai làm tiếp 3 giờ thì được 25% công việc. Hỏi nếu làm riêng một mình thì mỗi người cần bao nhiêu thời gian để hoàn thành công việc.
2) Tìm m để đồ thị của hàm số (m là tham số) cắt trục tung tại điểm A, cắt trục hoành tại điểm B sao cho diện tích tam giác AOB bằng 6 (với O là gốc tọa độ).
Câu 4 (3,0 điểm).
Cho đường tròn (O) đường kính AB = 2R. Điểm C nằm giữa hai điểm A và B, vẽ đường tròn (I) đường kính CA và đường tròn (K) đường kính CB. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn (O) tại D và E. Đoạn thẳng DA cắt đường tròn (I) tại M, DB cắt đường tròn (K) tại N.
a) Chứng minh rằng: Bốn điểm C, M, D, N cùng thuộc một đường tròn.
b) Chứng minh rằng: MN là tiếp tuyến chung của đường tròn (I) và đường tròn (K).
c) Xác định vị trí điểm C trên đường kính AB sao cho tứ giác CMDN có diện tích lớn nhất.
Câu 5 (1,0 điểm). Cho hai số thực x, y thỏa mãn: và . Tìm giá trị nhỏ nhất của biểu thức: .
–––––––– Hết ––––––––
Họ tên học sinh:…………………………………Số báo danh:……………..……
Chữ kí giám thị 1: …………………… Chữ kí giám thị 2:………………………
PHÒNG GD&ĐT BÌNH GIANG
HƯỚNG DẪN, BIỂU ĐIỂM THI THỬ THPT
NĂM HỌC 2018 - 2019 MÔN TOÁN
(Đáp án gồm 4 trang)
Câu
Đáp án
Điểm
Câu 1
(2 điểm)
0,25
0,25
0,25
Vậy nghiệm của phương trình là
0,25
0,25
0,25
0,25
Vậy nghiệm của hệ phương trình là
0,25
Câu 2
(2 điểm)
1) Với , ta có:
0,25
0,25
0,25
0,25
2) Tọa độ giao điểm của hai đường thẳng: , là nghiệm của hệ phương trình:
0,25
Học sinh tìm hoành độ giao điểm sau đó tìm tung độ giao điểm cho điểm tối đa
0,25
Ba đường thẳng: , và cùng đi qua một điểm khi điểm thuộc đường thẳng Không có điểm thuộc đường thẳng Hoặc đường thẳng đi qua điểm không chấm phần này
0,25
. Vậy m = - 5
0,25
Câu 3
(2 điểm)
1) Gọi thời gian người thứ nhất làm riêng một mình xong công việc là x (giờ), thời gian người thứ hai làm riêng một mình xong công việc là y (giờ), điều kiện x > 8, y > 8.
Trong một giờ: người thứ nhất làm được (công việc), người thứ hai làm được (công việc), cả hai người cùng làm chung một công việc trong vòng 8 giờ thì xong nên ta có phương trình: (1)
Cả hai người cùng làm chung một công việc trong vòng 8 giờ thay bằng Theo bài ra ta có phương trình cho điểm tối đa
0,25
Đổi 1 giờ 30 phút = giờ. Do người thứ nhất làm 1 giờ 30 phút và người thứ hai làm tiếp 3 giờ thì được 25% công việc nên ta có phương trình: (2)
Từ (1) và (2) ta có hệ phương trình:
0,25
Đặt ta có hệ phương trình:
0,25
Từ đó suy ra (Thoả mãn)
Vậy thời gian người thứ nhất làm riêng một mình xong công
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Đức Chính
Dung lượng: 325,50KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)