Đề thi thử vào 10 (03)

Chia sẻ bởi Ngô Tùng Toại | Ngày 13/10/2018 | 39

Chia sẻ tài liệu: Đề thi thử vào 10 (03) thuộc Đại số 9

Nội dung tài liệu:

Đề 3

Bài 1: Cho biểu thức: 
a). Tìm điều kiện của x và y để P xác định . Rút gọn P.
b). Tìm x,y nguyên thỏa mãn phơng trình P = 2.

Bài 2: Cho parabol (P) : y = -x2 và đờng thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) .
a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b). Xác định m để A,B nằm về hai phía của trục tung.

Bài 3: Giải hệ phơng trình :


Bài 4: Cho đường tròn (O) đkính AB = 2R và C là một điểm thuộc đường tròn  . Trên nửa mặt phẳng bờ AB có chứa điểm C , kẻ tia Ax tiếp xúc với đờng tròn (O), gọi M là điểm chính giữa của cung nhỏ AC . Tia BC cắt Ax tại Q , tia AM cắt BC tại N.
a). Chứng minh các tam giác BAN và MCN cân .
b). Khi MB = MQ , tính BC theo R.

Bài 5: Cho  thỏa mãn : 
Hãy tính giá trị của biểu thức : M =  + (x8 – y8)(y9 + z9)(z10 – x10) .




Đáp án

Bài 1: a). Điều kiện để P xác định là :; .
*). Rút gọn P:


Vậy P = 
b). P = 2 = 2

Ta có: 1 +  (   ( x = 0; 1; 2; 3 ; 4
Thay vào ta cócác cặp giá trị (4; 0) và (2 ; 2) thoả mãn
Bài 2: a). Đường thẳng (d) có hệ số góc m và đi qua điểm M(-1 ; -2) . Nên phơng trình đờng thẳng (d) là : y = mx + m – 2.
Hoành độ giao điểm của (d) và (P) là nghiệm của phơng trình:
- x2 = mx + m – 2
 x2 + mx + m – 2 = 0 (*)
Vì phơng trình (*) có  nên phơng trình (*) luôn có hai nghiệm phân biệt , do đó (d) và (P) luôn cắt nhau tại hai điểm phân biệt A và B.
b). A và B nằm về hai phía của trục tung  phơng trình : x2 + mx + m – 2 = 0 có hai nghiệm trái dấu  m – 2 < 0  m < 2.
Bài 3 : 
ĐKXĐ : 

Thay vào (1) => x = y = z = 3 .
Ta thấy x = y = z = 3 thõa mãn hệ phơng trình . Vậy hệ phơng trình có nghiệm duy nhất x = y = z = 3.
Bài 4:
a). Xét  và .
Ta có: AB là đờng kính của đờng tròn (O)
nên :AMB = NMB = 90o .
M là điểm chính giữa của cung nhỏ AC
nên ABM = MBN => BAM = BNM
=>  cân đỉnh B.
Tứ giác AMCB nội tiếp
=> BAM = MCN ( cùng bù với góc MCB).
=> MCN = MNC ( cùng bằng góc BAM).
=> Tam giác MCN cân đỉnh M
b). Xét và có :
MC = MN (theo cm trên MNC cân ) ; MB = MQ ( theo gt)
 BMC = MNQ ( vì : MCB = MNC ; MBC = MQN ).
=>  => BC = NQ .
Xét tam giác vuông ABQ có AB2 = BC . BQ = BC(BN + NQ)
=> AB2 = BC .( AB + BC) = BC( BC + 2R)
=> 4R2 = BC( BC + 2R) => BC = 
Bài 5:
Từ :  =>
=> 
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Ngô Tùng Toại
Dung lượng: 125,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)