đề thi thử thanh hóa lần 3

Chia sẻ bởi La Đức Sơn | Ngày 13/10/2018 | 39

Chia sẻ tài liệu: đề thi thử thanh hóa lần 3 thuộc Đại số 9

Nội dung tài liệu:


TRƯỜNG THPT ĐÔNG SƠN 1



ĐỀ A
ĐỀ THI THỬ VÀO LỚP 10 THPT
NĂM HỌC 2017 - 2018
Môn thi: TOÁN
Thời gian làm bài:120 phút, không kể thời gian phát đề
Đề thi gồm có 01 trang

Câu 1 (2,0 điểm)
Giải phương trình: x2 – 5x - 6 = 0

Giải hệ phương trình sau: 
Câu 2 (2,0 điểm)
Cho biểu thức: A = 
1.Tìm x để biểu thức có nghĩa. Rút gọn biểu thức A.
2.Tìm giá trị của x khi A = –2 và A = 3.
Câu 3 (2,0 điểm)
Cho Parabol (P): y = x2 – mx + m – 1
1. Tìm giá trị của tham số m để Parabol (P) đi qua điểm A(5;2)
2. Cho M =  (với x1 và x2 là hoành độ giao điểm của Parabol và trục Ox). Tìm giá trị của tham số m thỏa mãn biểu thức M > 0.
Câu 4(3,0 điểm)
Cho nửa đường tròn tâm O đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB. Gọi M là điểm chính giữa cung BC, E là giao điểm AM với OC. Chứng minh:
1. Tứ giác MBOE nội tiếp đường tròn và ME = MB.
2. CM là tiếp tuyến của đường tròn ngoại tiếp tứ giác MBOE.
Tính diện tích tam giác BME theo R.
Câu 5 (1,0 điểm)
Cho x, y, z là các số dương, thỏa mãn x + y + z = 3.
Chứng minh rằng: 
...............................Hết......................................

Họ và tên thí sinh......................................................SBD.....................................





TRƯỜNG THPT ĐÔNG SƠN 1


ĐỀ A
HƯỚNG DẪN CHẤM ĐỀ THI THỬ VÀO LỚP 10 THPT NĂM HỌC 2017 - 2018
Môn thi: TOÁN
Hướng dẫn chấm gồm có 02 trang


Câu
Nội dung
Điểm

1.1
Giải phương trình...
1,0


Từ phương trình bậc hai, ta có: a = 1; b = –5; c = -6
Tổng: a – b + c = 0
0,5


x1 = -1, x2 = 6
0,5

1.2
Giải hệ phương trình...
1,0



1,0

2.1
Rút gọn biểu thức...
1,0


 Điều kiện: x > 1
0,25





0,25




0,25


 Vậy biểu thức A = x với x > 1.
0,25

2.2
Tìm x...
1,0


Khi A = –2  x = –2 (loại do không thỏa mãn điều kiện xác định)
0,5


Khi A = 3  x = 3 (thỏa mãn điều kiệu xác định)
Vậy với A = 3 thì x = 3 thỏa mãn, A = –2 không có nghiệm x thỏa mãn
0,5

3.1
1.Tìm giá trị của tham số m để Parabol (P) đi qua điểm A(5;2)

1,0


Để Parabol (P) đi qua điểm A(5; 2) suy ra x = 5 ; y = 2
Thế vào phương trình: (P): y = x2 – mx + m – 1
 2 = 52 – 5m + m – 1  4m = 22 m =
0,5


Vậy với m =  thì Parabol (P) sẽ đi qua điểm A(5;2)
0,5

3.2
Cho M = 
Tìm giá trị của tham số m thỏa mãn biểu thức M > 0.
1,0



Xét phương trình: x2 – mx + m – 1 = 0  ≥ 0
Vì  nên phương trình (1) có 2 nghiệm phân biệt x1, x2

0,25


Do pt (1) có 2 nghiệm phân biệt x1, x2, nên theo hệ thức Viet, ta có:
 (2)
0,25



 (3)
Thế (2) vào (3), ta được:

0,25


Để M > 0 thì  > 0
TH1) 

TH2) 
Vậy với m > 1 hoặc m < 0 thì M > 0.
0,25

4













4.1



Tứ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: La Đức Sơn
Dung lượng: 227,50KB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)