ĐỀ THI THỬ MỚI
Chia sẻ bởi Bùi Thị Hạnh |
Ngày 13/10/2018 |
51
Chia sẻ tài liệu: ĐỀ THI THỬ MỚI thuộc Đại số 9
Nội dung tài liệu:
KÌ THI TUYỂN SINH NĂM HỌC 2010-2011
đề thi thử môn toáN
Thời gian 120 phút
Câu 1.(2,5 điểm). Cho biểu thức
a) Rút gọn P.
b) Tính giá trị của P khi a=4.
c) Tìm a để
Câu 2. (2,5 điểm). Một ca nô xuôi dòng từ A đến B dài 80km, sau đó lại ngược dòng đến C cách B 72km, thời gian ca nô xuôi dòng ít hơn thời gian ngược dòng là 15 phút. Tính vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h.
Câu 3. (1 điểm). Tìm tọa độ giao điểm A và B của hai đồ thị các hàm số y = 2x + 3 và y = x2. Gọi D và C lần lượt là hình chiếu vuông góc của A và B lên trục hoành. Tính diện tích tứ giác ABCD.
Câu 4. (3,5 điểm). Cho (O) đường kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ BM, H là giao điểm của AK và MN.
a) Chứng minh tứ giác BCHK nội tiếp được.
b) Tính tích AH.AK theo R.
c) Xác định vị trí của K để tổng (KM + KN + KB) đạt giá trị lớn nhất và tính giá trị lớn nhất đó.
Câu 5. (0,5 điểm). Cho hai số dương x, y thoả mãn điều kiện x + y = 2.
Chứng minh x2y2(x2 + y2) 2
KÌ THI TUYỂN SINH NĂM HỌC 2010-2011
đề thi thử môn toáN
Thời gian 120 phút
Câu 1. (2,5 điểm). Cho biểu thức
a) Tìm điều kiện để P có nghĩa và rút gọn P.
b) Tính giá trị của P khi .
c) Tìm các giá trị nguyên của x để biểu thức nhận giá trị nguyên.
Câu 2:(2,5 điểm) Hai người cùng làm chung một công việc sẽ hoàn thành trong 4h. Nếu mỗi người làm riêng để hoàn thành công việc thì thời gian người thứ nhất làm ít hơn người thứ 2 là 6h. Hỏi nếu làm riêng thì mỗi người phải làm trong bao lâu sẽ hoàn thành công việc?
Câu 3. (1 điểm). Trong mặt phẳng tọa độ Oxy cho (P) có phương trình . Gọi (d) là đường thẳng đi qua điểm I(0; - 2) và có hệ số góc k.
a) Viết phương trình dường thẳng (d). Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A và B khi k thay đổi.
b) Gọi H, K theo thứ tự là hình chiếu vuông góc của A, B lên trục hoành. Chứng minh rằng tam giác IHK vuông tại I.
Câu 4. (3,5 điểm). Cho (O; R), AB là đường kính cố định. Đường thẳng (d) là tiếp tuyến của (O) tại B. MN là đường kính thay đổi của (O) sao cho MN không vuông góc với AB và M ≠ A, M ≠ B. Các đường thẳng AM, AN cắt đường thẳng (d) tương ứng tại C và D. Gọi I là trung điểm của CD, H là giao điểm của AI và MN. Khi MN thay đổi, chứng minh rằng:
a) Tích AM.AC không đổi.
b) Bốn điểm C, M, N, D cùng thuộc một đường tròn.
c) Điểm H luôn thuộc một đường tròn cố định.
d) Tâm J của đường tròn ngoại tiếp tam giác HIB luôn thuộc một đường thẳng cố định.
Câu 5. (0,5 điểm). Cho hai số dương x, y thỏa mãn điều kiện x + y = 1. Hãy tìm giá trị nhỏ nhất của biểu thức .
đề thi thử môn toáN
Thời gian 120 phút
Câu 1.(2,5 điểm). Cho biểu thức
a) Rút gọn P.
b) Tính giá trị của P khi a=4.
c) Tìm a để
Câu 2. (2,5 điểm). Một ca nô xuôi dòng từ A đến B dài 80km, sau đó lại ngược dòng đến C cách B 72km, thời gian ca nô xuôi dòng ít hơn thời gian ngược dòng là 15 phút. Tính vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h.
Câu 3. (1 điểm). Tìm tọa độ giao điểm A và B của hai đồ thị các hàm số y = 2x + 3 và y = x2. Gọi D và C lần lượt là hình chiếu vuông góc của A và B lên trục hoành. Tính diện tích tứ giác ABCD.
Câu 4. (3,5 điểm). Cho (O) đường kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ BM, H là giao điểm của AK và MN.
a) Chứng minh tứ giác BCHK nội tiếp được.
b) Tính tích AH.AK theo R.
c) Xác định vị trí của K để tổng (KM + KN + KB) đạt giá trị lớn nhất và tính giá trị lớn nhất đó.
Câu 5. (0,5 điểm). Cho hai số dương x, y thoả mãn điều kiện x + y = 2.
Chứng minh x2y2(x2 + y2) 2
KÌ THI TUYỂN SINH NĂM HỌC 2010-2011
đề thi thử môn toáN
Thời gian 120 phút
Câu 1. (2,5 điểm). Cho biểu thức
a) Tìm điều kiện để P có nghĩa và rút gọn P.
b) Tính giá trị của P khi .
c) Tìm các giá trị nguyên của x để biểu thức nhận giá trị nguyên.
Câu 2:(2,5 điểm) Hai người cùng làm chung một công việc sẽ hoàn thành trong 4h. Nếu mỗi người làm riêng để hoàn thành công việc thì thời gian người thứ nhất làm ít hơn người thứ 2 là 6h. Hỏi nếu làm riêng thì mỗi người phải làm trong bao lâu sẽ hoàn thành công việc?
Câu 3. (1 điểm). Trong mặt phẳng tọa độ Oxy cho (P) có phương trình . Gọi (d) là đường thẳng đi qua điểm I(0; - 2) và có hệ số góc k.
a) Viết phương trình dường thẳng (d). Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A và B khi k thay đổi.
b) Gọi H, K theo thứ tự là hình chiếu vuông góc của A, B lên trục hoành. Chứng minh rằng tam giác IHK vuông tại I.
Câu 4. (3,5 điểm). Cho (O; R), AB là đường kính cố định. Đường thẳng (d) là tiếp tuyến của (O) tại B. MN là đường kính thay đổi của (O) sao cho MN không vuông góc với AB và M ≠ A, M ≠ B. Các đường thẳng AM, AN cắt đường thẳng (d) tương ứng tại C và D. Gọi I là trung điểm của CD, H là giao điểm của AI và MN. Khi MN thay đổi, chứng minh rằng:
a) Tích AM.AC không đổi.
b) Bốn điểm C, M, N, D cùng thuộc một đường tròn.
c) Điểm H luôn thuộc một đường tròn cố định.
d) Tâm J của đường tròn ngoại tiếp tam giác HIB luôn thuộc một đường thẳng cố định.
Câu 5. (0,5 điểm). Cho hai số dương x, y thỏa mãn điều kiện x + y = 1. Hãy tìm giá trị nhỏ nhất của biểu thức .
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Bùi Thị Hạnh
Dung lượng: 43,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)