Đề thi HSG toán 9 , hay

Chia sẻ bởi Phan Thị Lệ Thủy | Ngày 13/10/2018 | 42

Chia sẻ tài liệu: Đề thi HSG toán 9 , hay thuộc Đại số 9

Nội dung tài liệu:

ĐỀ thi chọn học sinh giỏi

Bài 1: (3 điểm)
Cho biểu thức:
Rút gọn biểu thức
Tìm các giá trị nguyên của để biểu thức nhận giá trị nguyên.

Bài 2: (3,5 điểm)
Tìm số có hai chữ số biết rằng phân số có tử số là số đó, mẫu số là tích của hai chữ số của nó có phân số tối giản là và hiệu của số cần tìm với số có cùng các chữ số với nó nhưng viết theo thứ tự ngược lại bằng 27.
Hãy tìm các chữ số biết rằng các số là các số chính phương.
Bài 3: (4,5 điểm)
Cho đường tròn (O; R) và đường thẳng d không đi qua O cắt đường tròn (O) tại hai điểm A và B. Từ một điểm M tùy ý trên đường thẳng d và ở ngoài đường tròn (O) vẽ hai tiếp tuyến MN và MP với đường tròn (O) (M, N là hai tiếp điểm).
Chứng minh rằng
Dựng vị trí điểm M trên đường thẳng d sao cho tứ giác MNOP là hình vuông.
Chứng minh rằng tâm của đường tròn nội tiếp và tâm của đường tròn ngoại tiếp tam giác MNP lần lượt chạy trên hai đường cố định khi M di động trên đường thẳng d.
Bài 4: (2,0 điểm)
Trong mặt phẳng tọa độ cho ba điểm Điểm D ở trên đoạn BC sao cho DA = DC. E là điểm tùy ý trên đoạn AC, đường thẳng d đi qua E và song song với đường thẳng AD cắt đường thẳng BA tại F. Đoạn BE cắt đoạn DA tại G. Chứng minh rằng 2 tia CG và CF đối xứng với nhau qua CA.
Bài 5: (3,0 điểm)
Trong các tấm bìa trình bày dưới đây, mỗi tấm có một mặt ghi một chữ cái và mặt kia ghi một số:



+ Chứng tỏ rằng để kiểm tra câu sau đây có đúng không: "Nếu mỗi tấm bìa mà mặt chữ cái là nguyên âm thì mặt kia là số chẵn", thì chỉ cần lật mặt sau của tối đa là 2 tấm bìa, đó là 2 tấm bìa nào ?
Để thành lập các đội tuyển học sinh giỏi khối 9, nhà trường tổ chức thi chọn các môn Toán, Văn và Ngoại ngữ trên tổng số 111 học sinh. Kết quả có: 70 học sinh giỏi Toán, 65 học sinh giỏi Văn và 62 học sinh giỏi Ngoại ngữ. Trong đó, có 49 học sinh giỏi cả 2 môn Văn và Toán, 32 học sinh giỏi cả 2 môn Toán và Ngoại ngữ, 34 học sinh giỏi cả 2 môn Văn và Ngoại ngữ.
Hãy xác định số học sinh giỏi cả ba môn Văn, Toán và Ngoại ngữ. Biết rằng có 6 học sinh không đạt yêu cầu cả ba môn.












Đáp án và thang điểm:
Bài 1

Nội dung
Điểm



(2 điểm)


1.
1.1
(2 đ)

Ta có: nên điều kiện để A có nghĩa là




()




0,50


0,25







0,50



0,25



0,50


1.2
(1,0 đ)

Với là số nguyên không âm, để A là số nguyên thì (v
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phan Thị Lệ Thủy
Dung lượng: 1,69MB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)