Đề thi HSG máy tính CASIO toàn quốc

Chia sẻ bởi Nguyễn Mạnh Thường | Ngày 13/10/2018 | 43

Chia sẻ tài liệu: Đề thi HSG máy tính CASIO toàn quốc thuộc Đại số 9

Nội dung tài liệu:

KỲ THI KHU VỰC GIẢI TOÁN TRÊN MÁY TÍNH CASIO CỦA BỘ GIÁO DỤC VÀ ĐÀO TẠO
NĂM 2007
Lớp 9 THCS
Thời gian : 150 phút ( Không kể thời gian giao đề )
Ngày thi : 13/3/2007


Bài 1 :
a) Tính giá trị của biểu thức lấy kết quả với 2 chữ số ở phần thập phân

b) Tính kết quả đúng ( không sai số ) của các tích sau
P = 13032006 × 13032007
Q = 3333355555 × 3333377777
c)Tính giá trị của biểu thức M với 
( Kết quả lấy với 4 chữ số ở phần thập phân )
ĐS : N = 567,87 ; P = 169833193416042
Q = 11111333329876501235
M = 1,7548
Bài 2 :Một người gửi tiết kiệm 100.000.000 đồng ( tiền Việt Nam ) vào một ngân hàng theo mức kỳ hạn 6 tháng với lãi suất 0,65% một tháng .
a) Hỏi sau 10 năm , người đó nhận được bao nhiêu tièn ( cả vốn và lãi ) ở ngân hàng . Biết rằng người đó không rút lãi ở tất cả các định kỳ trước đó
b) Nếu với số tiền trên , người đó gửi tiết kiệm theo mức kỳ hạn 3 tháng với lãi suất 0,63% một tháng thì sau 10 năm sẽ nhận được bao nhiêu tiền ( cả vốn và lãi ) ở ngân hàng . Biết rằng người đó không rút lãi ở tất cả các định kỳ trước đó
( Kết quả lấy theo các chữ số trên máy khi tính toán )
ĐS :
a) Theo kỳ hạn 6 tháng , số thiền nhận được là
 đồng
b) Theo kỳ hạn 3 tháng , số thiền nhận được là
 đồng
Bài 3 : Giải phương trình ( lấy kết quả với các chữ số tính được trên máy )

ĐS : x = - 0,99999338
Bài 4 : Giải phương trình ( lấy kết quả với các chữ số tính được trên máy )
 ĐS : 

Bài 5 : Xác định các hệ số a , b ,c của đa thức
 để sao cho P(x) chia cho
(x – 13) có số dư là 1 , chia cho (x – 3) có số dư là 2 và chia cho ( x - 14 ) có số dư là 3.
( Kết quả lấy với 2 chữ số ở phần thập phân )
ĐS : a = 3,69 ; b = -110,62 ; c = 968,28
Bài 6 : Xác định các hệ số a , b , c , d và tính giá trị của đa thức .
Tại các giá trị của x = 1,15 ; 1,25 ; 1,35 ; 1,45 .
ĐS : a =-93,5 ; b = -870 ; c =-2972,5 ; d = 4211
P(1,15) = 66,16 ; P(1,25) = 86,22 ; P(1,35) = 94,92 ;
P(1,45) = 94,66.
Bài 7 : Tam giác ABC vuông tại A có cạnh
AB = a = 2,75 cm , góc .Từ A vẽ các đường cao AH , đường phân giác AD và đường trung tuyến AM .
a) Tính độ dài của AH , AD , AM
b) Tính diện tích tam giác ADM
( Kết quả lấy với 2 chữ số ở phần thập phân )

ĐS : AH = 2,18 cm ; AD = 2,20 cm ; AM = 2,26cm

Bài 8 :
1 . Cho tam giác ABC có ba góc nhọn . Chứng minh rằng tổng của bình phương cạnh thứ nhất và bình phương cạnh thứ hai bằng hai lần bình phương trung tuyến thuộc cạnh thứ ba cộng vối nửa bình phương cạnh thứ ba.
Chứng minh theo hình vẽ
2. Bài toán áp dụng :
Tam giác ABC có cạnh AC = b = 3,85 cm ;
AB = c = 3,25cm và đường cao AH = h = 2,75 cm
a) Tính các góc A , B ,C và cạnh BC của tam giác .
b) Tính độ dài của trung tuyến AM ( M thuộc BC)
c) Tính diện tích tam giác AHM .
(góc tính đến phút ; độ dài và diện tích lấy kết quả với 2 chữ số thập phân )
ĐS : 





Bài 9 : Cho dãy số với số hạng tổng quát được cho bời công thức

 với n = 1 , 2 , 3 , . . . k , . . .
a) Tính 
b) Lập công thức truy hồi tính  theo  và 
c) Lập quy trình ấn phím liên tục tính  theo
 và 
ĐS : 


Bài 10 :
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Mạnh Thường
Dung lượng: 25,28KB| Lượt tài: 0
Loại file: zip
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)