ĐỀ THI HỌC SINH GIỎI Toán 9 QUẬN 10-TP HỒ CHÍ MINH 02 - 03

Chia sẻ bởi Phùng Mạnh Điềm | Ngày 13/10/2018 | 55

Chia sẻ tài liệu: ĐỀ THI HỌC SINH GIỎI Toán 9 QUẬN 10-TP HỒ CHÍ MINH 02 - 03 thuộc Đại số 9

Nội dung tài liệu:

ĐỀ THI HỌC SINH GIỎI LỚP 9 QUẬN 10-TP HỒ CHÍ MINH NĂM HỌC 2002 - 2003
* Môn thi : Toán      * Thời gian : 150 phút
Bài 1 : (3 điểm)
Giải phương trình : |x2 - 1| + |x2 - 4| = x2 - 2x + 4.
Bài 2 : (3 điểm)
Chứng minh đẳng thức :

với a, b trái dấu.
Bài 3 : (3 điểm)
Rút gọn :


Bài 4 : (3 điểm)
Trong các hình chữ nhật có chu vi là p, hình chữ nhật nào có diện tích lớn nhất ? Tính diện tích đó.
Bài 5 : (4 điểm)
Cho đường tròn (O ; R), điểm A nằm ngoài đường tròn (O). Kẻ tiếp tuyến AM, AN ; đường thẳng chứa đường kính, song song với MN cắt AM, AN lần lượt tại B và C.
Chứng minh :
a) Tứ giác MNCB là hình thang cân.
b) MA . MB = R2.
c) K thuộc cung nhỏ MN. Kẻ tiếp tuyến tại K cắt AM, AN lần lượt tại P và Q. Chứng minh : BP.CQ = BC2/4 .
Bài 6 : (4 điểm)
Cho đường tròn tâm O và đường kính AB. Kẻ tiếp tuyến (d) tại B của đường tròn (O). Gọi N là điểm di động trên (d), kẻ tiếp tuyến NM (M thuộc (O)).
a) Tìm quỹ tích tâm P của đường tròn ngoại tiếp tam giác MNB.
b) Tìm quỹ tích tâm Q của đường tròn nội tiếp tam giác MNB.

* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phùng Mạnh Điềm
Dung lượng: 28,50KB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)