Đề thi-đáp án thi HSG lớp 9 năm học 2011-2012
Chia sẻ bởi Mai Huy Dũng |
Ngày 13/10/2018 |
50
Chia sẻ tài liệu: Đề thi-đáp án thi HSG lớp 9 năm học 2011-2012 thuộc Đại số 9
Nội dung tài liệu:
Đề thi học sinh giỏi lớp 9 năm học 2011-2012
Môn: Toán (Thời gian: 150 phút)
Câu 1.
Phân tích thành nhân tử:
Tính khi biết
Câu 2. Cho hàm số: ; với tham số.
Xác định để đồ thị hàm số đi qua gốc tọa độ O.
b. Tính theo tọa độ các giao điểm A; B của đồ thị hàm số với các trục Ox; Oy. H là hình chiếu của O trên AB. Xác định giá trị của để
Tìm quỹ tích trung điểm I của đoạn thẳng AB.
Câu 3.
Giải phương trình:
Cho là hai số dương thỏa mãn: .
Chứng minh:
Giải phương trình nghiệm nguyên:
Câu 4.
Cho đường tròn (O;). AB và CD là hai đường kính cố định của (O) vuông góc với nhau. M là một điểm thuộc cung nhỏ AC của (O). K và H lần lượt là hình chiếu của M trên CD và AB.
Tính
Chứng minh:
Tìm vị trí điểm H để giá trị của: P = MA. MB. MC. MD lớn nhất.
Đáp án- biểu điểm:
Câu
Ý
Nội dung cần đạt
Điểm
1
a
0,5
0,5
2,0
b
Vậy:
0,5
0,5
2
a
; với tham số
Để đồ thị hàm số đi qua gốc tọa độ O(0; 0) thì
0,25
2,0
b
Tìm được tọa độ giao điểm A của đồ thị hàm số với trục Ox: A
Giao điểm B của đồ thị hàm số với trục Oy: B
Ta có: AOB vuông tại O và có OH là đường cao nên: Hay
0,5
0,5
c
Hoành độ trung điểm I của AB:
Tung độ trung điểm I của AB:
Ta có: Quỹ tích trung điểm I của đoạn thẳng AB là đường thẳng
0,5
0,25
3
a
Điều kiện:
Vậy nghiệm của pt là:
0,2
0,2
0,3
0,3
2,5
b
Với là hai số dương ta có: (Theo Bunhiacopski)
(Vì ) Hay
0,25
0,25
c
0,25
0,5
0,25
0,25
3,5
4
a
Vì M thuộc (O) nên các tam giác: BMA và CMD vuông tại M nên:
= = 1 + 1 = 2
0,75
b
Chứng minh:
Thật vậy: KOHM là hình chữ nhật nên: OK = MH
Mà MH2 = HA.HB (Hệ thức lượng trong tam giác vuông MAB có MH đường cao) và BH = AB – AH = 2R - AH
Suy ra: OK2 = MH2 = AH(2R- AH)
0,5
0,5
c
P = MA. MB. MC. MD =AB.MH.CD.MK = 4R2.OH.MH(Vì MK = OH)
Mà OH.MH(Pitago)
Vậy . đẳng thức xẩy ra MH = OH
OH =
0,25
0,25
0,25
0,25
Chia sẻ cùng thầy cô
Quý thầy cô và bạn hãy dành thêm một chút thời gian để đọc bài giới thiệu sau của tôi và hãy tri ân người đăng tài liệu này bằng cách dùng Email và mã số người giới thiệu của tôi theo hướng dẫn sau. Nó sẽ mang lại lợi ích cho chính thầy cô và các bạn, đồng thời tri ân được với người giới thiệu mình:
Kính chào quý thầy cô và các bạn.
Lời đầu tiên cho phép tôi được gửi tới quý thầy cô và các bạn lời chúc tốt đẹp nhất. Khi thầy cô và các bạn đọc bài viết này nghĩa là thầy cô và các bạn đã có thiên hướng làm kinh doanh
Nghề giáo là một nghề cao quý, được xã hội coi trọng và tôn vinh. Tuy nhiên, có lẽ cũng như tôi thấy rằng đồng lương của mình quá hạn hẹp. Nếu không phải môn học chính, và nếu không có dạy thêm, liệu rằng tiền lương có đủ cho những nhu cầu của thầy cô. Còn các
Môn: Toán (Thời gian: 150 phút)
Câu 1.
Phân tích thành nhân tử:
Tính khi biết
Câu 2. Cho hàm số: ; với tham số.
Xác định để đồ thị hàm số đi qua gốc tọa độ O.
b. Tính theo tọa độ các giao điểm A; B của đồ thị hàm số với các trục Ox; Oy. H là hình chiếu của O trên AB. Xác định giá trị của để
Tìm quỹ tích trung điểm I của đoạn thẳng AB.
Câu 3.
Giải phương trình:
Cho là hai số dương thỏa mãn: .
Chứng minh:
Giải phương trình nghiệm nguyên:
Câu 4.
Cho đường tròn (O;). AB và CD là hai đường kính cố định của (O) vuông góc với nhau. M là một điểm thuộc cung nhỏ AC của (O). K và H lần lượt là hình chiếu của M trên CD và AB.
Tính
Chứng minh:
Tìm vị trí điểm H để giá trị của: P = MA. MB. MC. MD lớn nhất.
Đáp án- biểu điểm:
Câu
Ý
Nội dung cần đạt
Điểm
1
a
0,5
0,5
2,0
b
Vậy:
0,5
0,5
2
a
; với tham số
Để đồ thị hàm số đi qua gốc tọa độ O(0; 0) thì
0,25
2,0
b
Tìm được tọa độ giao điểm A của đồ thị hàm số với trục Ox: A
Giao điểm B của đồ thị hàm số với trục Oy: B
Ta có: AOB vuông tại O và có OH là đường cao nên: Hay
0,5
0,5
c
Hoành độ trung điểm I của AB:
Tung độ trung điểm I của AB:
Ta có: Quỹ tích trung điểm I của đoạn thẳng AB là đường thẳng
0,5
0,25
3
a
Điều kiện:
Vậy nghiệm của pt là:
0,2
0,2
0,3
0,3
2,5
b
Với là hai số dương ta có: (Theo Bunhiacopski)
(Vì ) Hay
0,25
0,25
c
0,25
0,5
0,25
0,25
3,5
4
a
Vì M thuộc (O) nên các tam giác: BMA và CMD vuông tại M nên:
= = 1 + 1 = 2
0,75
b
Chứng minh:
Thật vậy: KOHM là hình chữ nhật nên: OK = MH
Mà MH2 = HA.HB (Hệ thức lượng trong tam giác vuông MAB có MH đường cao) và BH = AB – AH = 2R - AH
Suy ra: OK2 = MH2 = AH(2R- AH)
0,5
0,5
c
P = MA. MB. MC. MD =AB.MH.CD.MK = 4R2.OH.MH(Vì MK = OH)
Mà OH.MH(Pitago)
Vậy . đẳng thức xẩy ra MH = OH
OH =
0,25
0,25
0,25
0,25
Chia sẻ cùng thầy cô
Quý thầy cô và bạn hãy dành thêm một chút thời gian để đọc bài giới thiệu sau của tôi và hãy tri ân người đăng tài liệu này bằng cách dùng Email và mã số người giới thiệu của tôi theo hướng dẫn sau. Nó sẽ mang lại lợi ích cho chính thầy cô và các bạn, đồng thời tri ân được với người giới thiệu mình:
Kính chào quý thầy cô và các bạn.
Lời đầu tiên cho phép tôi được gửi tới quý thầy cô và các bạn lời chúc tốt đẹp nhất. Khi thầy cô và các bạn đọc bài viết này nghĩa là thầy cô và các bạn đã có thiên hướng làm kinh doanh
Nghề giáo là một nghề cao quý, được xã hội coi trọng và tôn vinh. Tuy nhiên, có lẽ cũng như tôi thấy rằng đồng lương của mình quá hạn hẹp. Nếu không phải môn học chính, và nếu không có dạy thêm, liệu rằng tiền lương có đủ cho những nhu cầu của thầy cô. Còn các
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Mai Huy Dũng
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)