DE THI + D.AN VAO LOP 10
Chia sẻ bởi Đỗ Phi Hùng |
Ngày 13/10/2018 |
37
Chia sẻ tài liệu: DE THI + D.AN VAO LOP 10 thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10
TP ĐÀ NẲNG Khóa ngày 23 tháng 06 năm 2009
MÔN: TOÁN
( Thời gian 120 phút, không kể thời gian giao đề )
Bài 1. ( 3 điểm )
Cho biểu thức
a) Rút gọn biểu thức K.
b) Tính giá trị của K khi a = 3 + 2
c) Tìm các giá trị của a sao cho K < 0.
Bài 2. ( 2 điểm ) Cho hệ phương trình:
a) Giải hệ phương trình khi cho m = 1.
b) Tìm giá trị của m để phương trình vô nghiệm.
Bài 3. ( 3,5 điểm )
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
a) Chứng minh tứ giác IECB nội tiếp được trong một đường tròn.
b) Chứng minh ∆AME ∆ACM và AM2 = AE.AC.
c) Chứng minh AE.AC - AI.IB = AI2.
d) Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Bài 4. ( 1,5 điểm )
Người ta rót đầy nước vào một chiếc ly hình nón thì được 8 cm3. Sau đó người ta rót nước từ ly ra để chiều cao mực nước chỉ còn lại một nửa. Hãy tính thể tích lượng nước còn lại trong ly.
ĐÁP ÁN
ĐỀ SỐ 1.
Bài 1.
a)
Điều kiện a > 0 và a ≠ 1 (0,25đ)
b)
a = 3 + 2 = (1 + )2
c)
Bài 2.
a)
Khi m = 1 ta có hệ phương trình:
b)
Hệ phương trình vô nghiệm (*) vô nghiệm
Bài 3.
a)
* Hình vẽ đúng
* (giả thiết)
* (góc nội tiếp chắn nửa đường tròn)
* Kết luận: Tứ giác IECB là tứ giác nội tiếp
b) (1 điểm) Ta có:
* sđ = sđ
*
*GócAchung,suyra∆AME ∆ACM.
* Do đó: AM2 = AE.AC
c)
* MI là đường cao của tam giác vuông MAB nên MI2 = AI.IB
* Trừ từng vế của hệ thức ở câu b) với hệ thức trên
* Ta có: AE.AC - AI.IB = AM2 - MI2 = AI2.
d)
* Từ câu b) suy ra AM là tiếp tuyến của đường tròn ngoại tiếp tam giác CME. Do đó tâm O1 của đường tròn ngoại tiếp tam giác CME nằm trên BM. Ta thấy khoảng cách NO1 nhỏ nhất khi và chỉ khi NO1BM.)
* Dựng hình chiếu vuông góc của N trên BM ta được O1. Điểm C là giao của đường tròn đã cho với đường tròn tâm O1, bán kính O1M.
Bài 4. (2 điểm)
Phần nước còn lại tạo thành hình nón có chiều cao bằng một nửa chiều cao của hình nón do 8cm3 nước ban đầu tạo thành. Do đó phần nước còn lại có thể tích bằng thể tích nước ban đầu. Vậy trong ly còn lại 1cm3 nước.
Sở GD&ĐT Hà Nội Đề thi tuyển sinh lớp 10
---------------- Năm học: 2009 - 2010.
Môn: Toán.
Ngày thi: 23 - 6 - 2009.
Thời gian làm bài: 120 phút.
Câu I(2,5đ): Cho biểu thức A , với x ≥ 0 và x ≠ 4.
1/ Rút gọn biểu thức A.
2/ Tính giá trị của biểu thức A khi x = 25.
3/ Tìm giá trị của x để A = -1/3.
Câu II (2,5đ): Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1310 chiếc á
TP ĐÀ NẲNG Khóa ngày 23 tháng 06 năm 2009
MÔN: TOÁN
( Thời gian 120 phút, không kể thời gian giao đề )
Bài 1. ( 3 điểm )
Cho biểu thức
a) Rút gọn biểu thức K.
b) Tính giá trị của K khi a = 3 + 2
c) Tìm các giá trị của a sao cho K < 0.
Bài 2. ( 2 điểm ) Cho hệ phương trình:
a) Giải hệ phương trình khi cho m = 1.
b) Tìm giá trị của m để phương trình vô nghiệm.
Bài 3. ( 3,5 điểm )
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
a) Chứng minh tứ giác IECB nội tiếp được trong một đường tròn.
b) Chứng minh ∆AME ∆ACM và AM2 = AE.AC.
c) Chứng minh AE.AC - AI.IB = AI2.
d) Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Bài 4. ( 1,5 điểm )
Người ta rót đầy nước vào một chiếc ly hình nón thì được 8 cm3. Sau đó người ta rót nước từ ly ra để chiều cao mực nước chỉ còn lại một nửa. Hãy tính thể tích lượng nước còn lại trong ly.
ĐÁP ÁN
ĐỀ SỐ 1.
Bài 1.
a)
Điều kiện a > 0 và a ≠ 1 (0,25đ)
b)
a = 3 + 2 = (1 + )2
c)
Bài 2.
a)
Khi m = 1 ta có hệ phương trình:
b)
Hệ phương trình vô nghiệm (*) vô nghiệm
Bài 3.
a)
* Hình vẽ đúng
* (giả thiết)
* (góc nội tiếp chắn nửa đường tròn)
* Kết luận: Tứ giác IECB là tứ giác nội tiếp
b) (1 điểm) Ta có:
* sđ = sđ
*
*GócAchung,suyra∆AME ∆ACM.
* Do đó: AM2 = AE.AC
c)
* MI là đường cao của tam giác vuông MAB nên MI2 = AI.IB
* Trừ từng vế của hệ thức ở câu b) với hệ thức trên
* Ta có: AE.AC - AI.IB = AM2 - MI2 = AI2.
d)
* Từ câu b) suy ra AM là tiếp tuyến của đường tròn ngoại tiếp tam giác CME. Do đó tâm O1 của đường tròn ngoại tiếp tam giác CME nằm trên BM. Ta thấy khoảng cách NO1 nhỏ nhất khi và chỉ khi NO1BM.)
* Dựng hình chiếu vuông góc của N trên BM ta được O1. Điểm C là giao của đường tròn đã cho với đường tròn tâm O1, bán kính O1M.
Bài 4. (2 điểm)
Phần nước còn lại tạo thành hình nón có chiều cao bằng một nửa chiều cao của hình nón do 8cm3 nước ban đầu tạo thành. Do đó phần nước còn lại có thể tích bằng thể tích nước ban đầu. Vậy trong ly còn lại 1cm3 nước.
Sở GD&ĐT Hà Nội Đề thi tuyển sinh lớp 10
---------------- Năm học: 2009 - 2010.
Môn: Toán.
Ngày thi: 23 - 6 - 2009.
Thời gian làm bài: 120 phút.
Câu I(2,5đ): Cho biểu thức A , với x ≥ 0 và x ≠ 4.
1/ Rút gọn biểu thức A.
2/ Tính giá trị của biểu thức A khi x = 25.
3/ Tìm giá trị của x để A = -1/3.
Câu II (2,5đ): Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1310 chiếc á
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đỗ Phi Hùng
Dung lượng: 3,37MB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)