Đề thi chọn HSG
Chia sẻ bởi Tống Văn Thuỷ |
Ngày 13/10/2018 |
59
Chia sẻ tài liệu: Đề thi chọn HSG thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HÓA
ĐỀ CHÍNH THỨC
KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
NĂM HỌC 2017-2018
Môn thi: TOÁN - Lớp 9 THCS
Thời gian: 150 phút (không kể thời gian giao đề)
Ngày thi: 10 tháng 3 năm 2018
(Đề thi có 01 trang, gồm 05 câu)
Câu I (4,0 điểm).
1. Cho biểu thức , với Rút gọn và tìm tất cả các giá trị của sao cho giá trị của P là một số nguyên.
2. Tính giá trị của biểu thức tại
Câu II (4,0 điểm).
1. Biết phương trình có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng
2. Giải hệ phương trình
Câu III (4,0 điểm).
1. Tìm nghiệm nguyên của phương trình
2. Cho là các số nguyên dương thỏa mãn là số nguyên tố và chia hết cho 8. Giả sử là các số nguyên thỏa mãn chia hết cho . Chứng minh rằng cả hai số chia hết cho .
Câu IV (6,0 điểm).
Cho tam giác có theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh của tam giác với các tâm tương ứng là . Gọi là tiếp điểm của với , là điểm chính giữa cung của , cắt tại điểm . Gọi là giao điểm của và là điểm đối xứng với qua
1. Chứng minh là tứ giác nội tiếp.
2. Chứng minh là tiếp tuyến của đường tròn ngoại tiếp tam giác
3. Chứng minh .
Câu V (2,0 điểm).
Cho là các số thực dương thỏa mãn Chứng minh rằng
------------- HẾT --------------
THANH HÓA
ĐỀ CHÍNH THỨC
KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
NĂM HỌC 2017-2018
Môn thi: TOÁN - Lớp 9 THCS
Thời gian: 150 phút (không kể thời gian giao đề)
Ngày thi: 10 tháng 3 năm 2018
(Đề thi có 01 trang, gồm 05 câu)
Câu I (4,0 điểm).
1. Cho biểu thức , với Rút gọn và tìm tất cả các giá trị của sao cho giá trị của P là một số nguyên.
2. Tính giá trị của biểu thức tại
Câu II (4,0 điểm).
1. Biết phương trình có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm để độ dài đường cao ứng với cạnh huyền của tam giác vuông đó bằng
2. Giải hệ phương trình
Câu III (4,0 điểm).
1. Tìm nghiệm nguyên của phương trình
2. Cho là các số nguyên dương thỏa mãn là số nguyên tố và chia hết cho 8. Giả sử là các số nguyên thỏa mãn chia hết cho . Chứng minh rằng cả hai số chia hết cho .
Câu IV (6,0 điểm).
Cho tam giác có theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh của tam giác với các tâm tương ứng là . Gọi là tiếp điểm của với , là điểm chính giữa cung của , cắt tại điểm . Gọi là giao điểm của và là điểm đối xứng với qua
1. Chứng minh là tứ giác nội tiếp.
2. Chứng minh là tiếp tuyến của đường tròn ngoại tiếp tam giác
3. Chứng minh .
Câu V (2,0 điểm).
Cho là các số thực dương thỏa mãn Chứng minh rằng
------------- HẾT --------------
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Tống Văn Thuỷ
Dung lượng: 88,20KB|
Lượt tài: 1
Loại file: docx
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)