DE THAM KHAO KT HKII MON TOAN
Chia sẻ bởi Phuc Minh Tri |
Ngày 13/10/2018 |
41
Chia sẻ tài liệu: DE THAM KHAO KT HKII MON TOAN thuộc Đại số 9
Nội dung tài liệu:
PHÒNG GD-ĐT HUYỆN NHÀ BÈ HS: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRƯỜNG THCS HAI BÀ TRƯNG Lớp: 9A
TỔ TOÁN-TIN
ĐỀ CƯƠNG ÔN KIỂM TRA HỌC KỲ II MÔN TOÁN LỚP 9
NĂM HỌC 2015 – 2016
ĐỀ THAM KHẢO KIỂM TRA HỌC KỲ 2
ĐỀ 1 (2013 – 2014)
Bài 1 (3,5 điểm) Giải các hệ phương trình và phương trình:
a) b) c) d)
Bài 2 (1,5 điểm)
a) Vẽ đồ thị hàm số y = (P) và đường thẳng y = x + 1 (D) trên cùng mặt phẳng tọa độ. b) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán.
Bài 3 (1,5 điểm) Cho phương trình bậc 2 ẩn x (m là tham số): x2 – 2(m + 1)x + 2m - 4 = 0
a) Chứng minh phương trình luôn có hai nghiệm phân biệt x1,x2 với mọi giá trị của m.
b) Tính tổng và tích hai nghiệm x1; x2 theo m. c) Tính giá trị của m để :
Bài 4 (3,5 điểm) Từ điểm ở ngoài (O;R), vẽ các tiếp tuyến AB, AC (B, C là tiếp điểm).
Chứng minh tứ giác ABOC nội tiếp.
Vẽ cát tuyến ADE (D, E thuộc (O) và D nằm giữa A, E). Chứng minh: AB2=AD.AE.
Vẽ OI vuông góc AE tại I. Chứng minh O, I, B, A, C cùng nằm trên một đường tròn và IA là tia phân giác của góc BIC.
d) Gọi K là giao điểm của BC và AD. Chứng minh:
ĐỀ 2 (2012 – 2013)
Bài 1: (3 điểm) Giải các phương trình và hệ phương trình sau:
a/ 3x2 + 2x - 5 = 0 b/ x4 – 3x2 – 4 = 0 c/
Bài 2: (2 điểm)
a/ Vẽ đồ thị hàm số ( P): y = x2 và đường thẳng ( D): y = 2x + 3 trên cùng 1 hệ trục tọa độ.
b/ Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: (1, 5 điểm) Không dùng công thức nghiệm áp dụng vào phương trình bậc 2: x2 + x - 6 = 0 a/ Chứng minh phương trình có hai nghiệm phân biệt x1; x2.
b/ Tính + ; x12 + x22
Bài 4: (3,5 điểm) Cho ∆ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn tâm O, bán kính R. Các đường cao AD, BE, CF cắt nhau tại H.
a/ Chứng minh tứ giác BFHD, AEDB nội tiếp.
b/ Vẽ đường kính AI. Chứng minh AB.AC = AI.AD
c/ Chứng minh tứ giác BHCI là hình bình hành.
d/ Cho biết = 600 và M là trung điểm của cạnh BC; CM: và OA = AH.
ĐỀ 3 ( 2011-2012 )
Bài 1 (2,5 điểm) Giải các hệ phương trình và phương trình :
a) b) c)
Bài 2 (2 điểm)
a) Vẽ đồ thị hàm số y = - x2 (P) và đường thẳng y = -2x-3 (D) trên cùng mặt phẳng tọa độ .
b) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán.
Bài 3 (2 điểm) Cho phương trình x2 + mx + 2m – 3 = 0 ( x là ẩn số )
a) Chứng minh phương trình luôn có nghiệm x1,x2 với mọi giá trị của m.
b) Tính tổng và tích của x1,x2 theo m. c) Tính m để : .
Bài 4 (3,5 điểm) Cho tam giác ABC có 3 góc nhọn,đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: Các tứ giác AEHF, BCEF nội tiếp được đường tròn.
b) Chứng minh: AF.AB = AH.AD.
c) Chứng minh EB là phân giác của góc FED.
d) Vẽ đường tròn (O) đường kính BC. Tính diện tích hình quạt FOC nếu biết ABC = 600.
ĐỀ 4 ( 2010 – 2011 )
Bài 1 (3 điểm ) Giải các phương trình và hệ phương trình :
a) b) c) d)
TRƯỜNG THCS HAI BÀ TRƯNG Lớp: 9A
TỔ TOÁN-TIN
ĐỀ CƯƠNG ÔN KIỂM TRA HỌC KỲ II MÔN TOÁN LỚP 9
NĂM HỌC 2015 – 2016
ĐỀ THAM KHẢO KIỂM TRA HỌC KỲ 2
ĐỀ 1 (2013 – 2014)
Bài 1 (3,5 điểm) Giải các hệ phương trình và phương trình:
a) b) c) d)
Bài 2 (1,5 điểm)
a) Vẽ đồ thị hàm số y = (P) và đường thẳng y = x + 1 (D) trên cùng mặt phẳng tọa độ. b) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán.
Bài 3 (1,5 điểm) Cho phương trình bậc 2 ẩn x (m là tham số): x2 – 2(m + 1)x + 2m - 4 = 0
a) Chứng minh phương trình luôn có hai nghiệm phân biệt x1,x2 với mọi giá trị của m.
b) Tính tổng và tích hai nghiệm x1; x2 theo m. c) Tính giá trị của m để :
Bài 4 (3,5 điểm) Từ điểm ở ngoài (O;R), vẽ các tiếp tuyến AB, AC (B, C là tiếp điểm).
Chứng minh tứ giác ABOC nội tiếp.
Vẽ cát tuyến ADE (D, E thuộc (O) và D nằm giữa A, E). Chứng minh: AB2=AD.AE.
Vẽ OI vuông góc AE tại I. Chứng minh O, I, B, A, C cùng nằm trên một đường tròn và IA là tia phân giác của góc BIC.
d) Gọi K là giao điểm của BC và AD. Chứng minh:
ĐỀ 2 (2012 – 2013)
Bài 1: (3 điểm) Giải các phương trình và hệ phương trình sau:
a/ 3x2 + 2x - 5 = 0 b/ x4 – 3x2 – 4 = 0 c/
Bài 2: (2 điểm)
a/ Vẽ đồ thị hàm số ( P): y = x2 và đường thẳng ( D): y = 2x + 3 trên cùng 1 hệ trục tọa độ.
b/ Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: (1, 5 điểm) Không dùng công thức nghiệm áp dụng vào phương trình bậc 2: x2 + x - 6 = 0 a/ Chứng minh phương trình có hai nghiệm phân biệt x1; x2.
b/ Tính + ; x12 + x22
Bài 4: (3,5 điểm) Cho ∆ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn tâm O, bán kính R. Các đường cao AD, BE, CF cắt nhau tại H.
a/ Chứng minh tứ giác BFHD, AEDB nội tiếp.
b/ Vẽ đường kính AI. Chứng minh AB.AC = AI.AD
c/ Chứng minh tứ giác BHCI là hình bình hành.
d/ Cho biết = 600 và M là trung điểm của cạnh BC; CM: và OA = AH.
ĐỀ 3 ( 2011-2012 )
Bài 1 (2,5 điểm) Giải các hệ phương trình và phương trình :
a) b) c)
Bài 2 (2 điểm)
a) Vẽ đồ thị hàm số y = - x2 (P) và đường thẳng y = -2x-3 (D) trên cùng mặt phẳng tọa độ .
b) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán.
Bài 3 (2 điểm) Cho phương trình x2 + mx + 2m – 3 = 0 ( x là ẩn số )
a) Chứng minh phương trình luôn có nghiệm x1,x2 với mọi giá trị của m.
b) Tính tổng và tích của x1,x2 theo m. c) Tính m để : .
Bài 4 (3,5 điểm) Cho tam giác ABC có 3 góc nhọn,đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: Các tứ giác AEHF, BCEF nội tiếp được đường tròn.
b) Chứng minh: AF.AB = AH.AD.
c) Chứng minh EB là phân giác của góc FED.
d) Vẽ đường tròn (O) đường kính BC. Tính diện tích hình quạt FOC nếu biết ABC = 600.
ĐỀ 4 ( 2010 – 2011 )
Bài 1 (3 điểm ) Giải các phương trình và hệ phương trình :
a) b) c) d)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phuc Minh Tri
Dung lượng: 522,00KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)