Đề HSG Toán 10-lớp 9 tham khảo

Chia sẻ bởi Nguyễn Văn Kiệm | Ngày 13/10/2018 | 38

Chia sẻ tài liệu: Đề HSG Toán 10-lớp 9 tham khảo thuộc Đại số 9

Nội dung tài liệu:


ĐỀ CHỌN ĐỘI DỰ TUYỂN HỌC SINH GIỎI TĨNH MÔN TOÁN 10, NĂM HỌC 2009 - 2010
Thời gian 180 phút, không kể thời gian giao đề
Lần: 03. Ngày 10 - 01 - 2010
Câu I: (5,0 điểm)
a. Giải phương trình 
b. Giải hệ phương trình 
Câu II: (5,0 điểm). Cho tam giác ABC có đường cao CH, H(AB. Các điểm I, K lần lượt là trung điểm của các đoạn AB và CH . Một đường thẳng d di động luôn song song với cạnh AB cắt cạnh AC tại M và cạnh BC tại N. Vẽ hình chữ nhật MNPQ với hai điểm P, Q thuộc cạnh AB. Gọi J là tâm của hình chữ nhật MNPQ. Chứng minh I, J, K thẳng hàng.

Câu III: (3,0 điểm) Gọi x1, x2 là 2 nghiệm của pt: 2x2 + 2(m + 1)x + m2 + 4m + 3 = 0. Với giá trị nào của m thì biểu thức A =  đạt giá trị lớn nhất.
Câu IV: (4,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho (ABC có đỉnh A(4; 3), đường cao BH và trung tuyến CM có pt lần lượt là: 3x ( y + 11 = 0, x + y ( 1 = 0. Tìm tọa độ các đỉnh B, C
Câu V: ( 3,0 điểm) Cho 3 số thực dương x,y,z >o thoả :  .Tìm GTNN của A = 
---Hết---




ĐỀ CHỌN ĐỘI DỰ TUYỂN HỌC SINH GIỎI TĨNH MÔN TOÁN 10, NĂM HỌC 2009 - 2010
Thời gian 180 phút, không kể thời gian giao đề
Lần: 03. Ngày 10 - 01 - 2010
Câu I: (5,0 điểm)
a. Giải phương trình 
b. Giải hệ phương trình 
Câu II: (5,0 điểm). Cho tam giác ABC có đường cao CH, H(AB. Các điểm I, K lần lượt là trung điểm của các đoạn AB và CH . Một đường thẳng d di động luôn song song với cạnh AB cắt cạnh AC tại M và cạnh BC tại N. Vẽ hình chữ nhật MNPQ với hai điểm P, Q thuộc cạnh AB. Gọi J là tâm của hình chữ nhật MNPQ. Chứng minh I, J, K thẳng hàng.

Câu III: (3,0 điểm) Gọi x1, x2 là 2 nghiệm của pt: 2x2 + 2(m + 1)x + m2 + 4m + 3 = 0. Với giá trị nào của m thì biểu thức A =  đạt giá trị lớn nhất.
Câu IV: (4,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho (ABC có đỉnh A(4; 3), đường cao BH và trung tuyến CM có pt lần lượt là: 3x ( y + 11 = 0, x + y ( 1 = 0. Tìm tọa độ các đỉnh B, C
Câu V: ( 3,0 điểm) Cho 3 số thực dương x,y,z >o thoả :  .Tìm GTNN của A = 
---Hết---

* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Văn Kiệm
Dung lượng: 35,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)