ĐỀ &ĐÁP ÁN TOÁN TOÁN CHUYÊN LÊ QUÝ ĐÔN BÌNH ĐỊNH NĂM 2009-2010
Chia sẻ bởi Nguyễn Hồng Ân |
Ngày 13/10/2018 |
34
Chia sẻ tài liệu: ĐỀ &ĐÁP ÁN TOÁN TOÁN CHUYÊN LÊ QUÝ ĐÔN BÌNH ĐỊNH NĂM 2009-2010 thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC BÌNH ĐỊNH KỲ THI TUỶÊN SINH VÀO LỚP 10
BÌNH ĐỊNH TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN
NĂM HỌC 2009-2010
Đề chính thức Môn thi:Toán (chuyên)
Ngày thi:19/06/2009
Thời gian:150 phút
Bài 1(1.5điểm)
Cho a,b,c là độ dài ba cạnh của một tam giác.Chứng minh rằng:
Bài 2(2điểm)
Cho 3 số phân biệt m,n,p.Chứng minh rằng phương trình có hai nghiệm phân biệt.
Bài 3(2điểm)
Với số tự nhiên n,.Đặt
Chúng minhSn<
Bài 4(3điểm)
Cho tam giác ABC nội tiếp tròn tâm O có độ dài các cạnh BC = a, AC = b, AB = c.E là điểm nằm trên cung BC không chứa điểm A sao cho cung EB bằng cung EC.AE cắt cạnh BC tại D.
a.Chúng minh:AD2 = AB.AC – DB.DC
b.Tính độ dài AD theo a,b,c
Bài 5(1.5điểm)
Chứng minh rằng : Với mọi số nguyên m,n.
**********************************************
ĐÁP ÁN MÔN TOÁN THI VÀO 10
TRƯỜNG CHUYÊN LÊ QUÝ ĐÔN NĂM 2009
Bài 1:
Vì a,b,c là độ dài ba cạnh tam giác nên ta có:a,b,c >0 và a< b+c ,b< a + c , c < a+b
Nên ta có
Mặt khác
Vậy ta có
Tương tự
Cộng (1) (2) và (3) vế theo vế ta có điều phải chứng minh.
Bài 2:
ĐK: PT đã cho (x-n)(x-p)+(x-m)(x-p)+(x-m)(x-n) = 0
3x2 -2(m+n+p)x +mn+mp+np = 0(1)
Ta có = m2+n2+p2 +2mn+2mp+2np -3mn-3mp-3np = m2+n2+p2 –mn-mp-np =[(m-n)2+(n-p)2+(m-p)2] >0
Đặt f(x) = 3x2 -2(m+n+p)x + mn+ mp +np
Ta có f(m) = 3m2 – 2m2 -2mn -2mp +mn +mp +np = m2 –mn –mp +np = (m-n)(m-p) 0
= >m,n,p không phải là nghiệm của pt(1)
Vậy PT đã cho luôn có hai nghiệm phân biệt
Bài 3
Do đó
Bài 3:
Ta có ( Do cung EB = cung EC)
Và ( Hai góc nội tiếp cùng chắn cung AC) nên
Ta có
(2 góc nội tiếp cùng chắn cung CE) nên
AD(AE-AD) = DB.DC
Hay AD2 = AD.AE - DB.DC=AB.AC – DB.DC (do (1))
4b)Theo tính chất đường phân giác ta có
vậy
theo câu a ta có AD2 = AB.AC – DB.DC =
Bài 5:
Vì
Ta xet hai trường hợp:
a)
Từ đó suy ra :
b)
Từ đó suy ra :
************************************************
BÌNH ĐỊNH TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN
NĂM HỌC 2009-2010
Đề chính thức Môn thi:Toán (chuyên)
Ngày thi:19/06/2009
Thời gian:150 phút
Bài 1(1.5điểm)
Cho a,b,c là độ dài ba cạnh của một tam giác.Chứng minh rằng:
Bài 2(2điểm)
Cho 3 số phân biệt m,n,p.Chứng minh rằng phương trình có hai nghiệm phân biệt.
Bài 3(2điểm)
Với số tự nhiên n,.Đặt
Chúng minhSn<
Bài 4(3điểm)
Cho tam giác ABC nội tiếp tròn tâm O có độ dài các cạnh BC = a, AC = b, AB = c.E là điểm nằm trên cung BC không chứa điểm A sao cho cung EB bằng cung EC.AE cắt cạnh BC tại D.
a.Chúng minh:AD2 = AB.AC – DB.DC
b.Tính độ dài AD theo a,b,c
Bài 5(1.5điểm)
Chứng minh rằng : Với mọi số nguyên m,n.
**********************************************
ĐÁP ÁN MÔN TOÁN THI VÀO 10
TRƯỜNG CHUYÊN LÊ QUÝ ĐÔN NĂM 2009
Bài 1:
Vì a,b,c là độ dài ba cạnh tam giác nên ta có:a,b,c >0 và a< b+c ,b< a + c , c < a+b
Nên ta có
Mặt khác
Vậy ta có
Tương tự
Cộng (1) (2) và (3) vế theo vế ta có điều phải chứng minh.
Bài 2:
ĐK: PT đã cho (x-n)(x-p)+(x-m)(x-p)+(x-m)(x-n) = 0
3x2 -2(m+n+p)x +mn+mp+np = 0(1)
Ta có = m2+n2+p2 +2mn+2mp+2np -3mn-3mp-3np = m2+n2+p2 –mn-mp-np =[(m-n)2+(n-p)2+(m-p)2] >0
Đặt f(x) = 3x2 -2(m+n+p)x + mn+ mp +np
Ta có f(m) = 3m2 – 2m2 -2mn -2mp +mn +mp +np = m2 –mn –mp +np = (m-n)(m-p) 0
= >m,n,p không phải là nghiệm của pt(1)
Vậy PT đã cho luôn có hai nghiệm phân biệt
Bài 3
Do đó
Bài 3:
Ta có ( Do cung EB = cung EC)
Và ( Hai góc nội tiếp cùng chắn cung AC) nên
Ta có
(2 góc nội tiếp cùng chắn cung CE) nên
AD(AE-AD) = DB.DC
Hay AD2 = AD.AE - DB.DC=AB.AC – DB.DC (do (1))
4b)Theo tính chất đường phân giác ta có
vậy
theo câu a ta có AD2 = AB.AC – DB.DC =
Bài 5:
Vì
Ta xet hai trường hợp:
a)
Từ đó suy ra :
b)
Từ đó suy ra :
************************************************
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Hồng Ân
Dung lượng: 126,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)