Đề+ĐA Toán vào 10_Hưng Yên 12-13

Chia sẻ bởi Ngô Tùng Toại | Ngày 13/10/2018 | 35

Chia sẻ tài liệu: Đề+ĐA Toán vào 10_Hưng Yên 12-13 thuộc Đại số 9

Nội dung tài liệu:


Sở giáo dục và đào tạo
Hưng yên

đề chính thức
(Đề thi có 01 trang)

kỳ thi tuyển sinh vào lớp 10 thpt chuyên
Năm học 2012 - 2013
Môn thi: Toán
(Dành cho thí sinh dự thi các lớp chuyên: Toán, Tin)
Thời gian làm bài: 150 phút

Bài 1: (2 điểm)
Cho A =. Chứng minh A là một số tự nhiên.
Giải hệ phương trình 
Bài 2: (2 điểm)
Cho Parbol (P): y = x2 và đường thẳng (d): y = (m +2)x – m + 6. Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ dương.
Giải phương trình: 5 + x + 
Bài 3: (2 điểm)
Tìm tất cả các số hữu tỷ x sao cho A = x2 + x+ 6 là một số chính phương.
Cho x > 1 và y > 1. Chứng minh rằng : 
Bài 4 (3 điểm)
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, đường cao BE và CF. Tiếp tuyến tại B và C cắt nhau tại S, gọi BC và OS cắt nhau tại M
Chứng minh AB. MB = AE.BS
Hai tam giác AEM và ABS đồng dạng
Gọi AM cắt EF tại N, AS cắt BC tại P. CMR NP vuông góc với BC
Bài 5: (1 điểm)
Trong một giải bóng đá có 12 đội tham dự, thi đấu vòng tròn một lượt (hai đội bất kỳ thi đấu với nhau đúng một trận). a) Chứng minh rằng sau 4 vòng đấu (mỗi đội thi đấu đúng 4 trận) luôn tìm được ba đội bóng đôi một chưa thi đấu với nhau. b) Khẳng định trên còn đúng không nếu các đội đã thi đấu 5 trận?





HƯỚNG DẪN GIẢI
Bài 1: (2 điểm)
Cho A =
Đặt 2012 = a, ta có   
Đặt 
Ta có  nên  
Bài 2:
a) ycbt tương đương với PT x2 = (m +2)x – m + 6 hay x2 - (m +2)x + m – 6 = 0 có hai nghiệm dương phân biệt.
b) Đặt t = 
Bài 3:
x = 0, x = 1, x= -1 không thỏa mãn. Với x khác các giá trị này, trước hết ta chứng minh x phải là số nguyên.
+) x2 + x+ 6 là một số chính phương nên x2 + x phải là số nguyên.
+) Giả sử  với m và n có ước nguyên lớn nhất là 1.
Ta có x2 + x = là số nguyên khi  chia hết cho n2
nên  chia hết cho n, vì mn chia hết cho n nên m2 chia hết cho n và do m và n có ước nguyên lớn nhất là 1, suy ra m chia hết cho n( mâu thuẫn với m và n có ước nguyên lớn nhất là 1). Do đó x phải là số nguyên.
Đặt x2 + x+ 6 = k2
Ta có 4x2 + 4x+ 24 = 4 k2 hay (2x+1)2 + 23 = 4 k2 tương đương với 4 k2 - (2x+1)2 = 23
= .
Theo BĐT Côsi



Nên có đpcm

Bài 4


Suy ra từ hai tam giác đồng dạng là ABE và BSM
Từ câu a) ta có  (1)
Mà MB = EM( do tam giác BEC vuông tại E có M là trung điểm của BC
Nên 
Có 
Nên  do đó 
Suy ra (2)
Từ (1) và (2) suy ra hai tam giác AEM và ABS đồng dạng(đpcm.)
Dễ thấy SM vuông góc với BC nên để chứng minh bài toán ta chứng minh NP //SM.
+ Xét hai tam giác ANE và APB:
Từ câu b) ta có hai tam giác AEM và ABS đồng dạng nên ,
Mà ( do tứ giác BCEF nội tiếp)
Do đó hai tam giác ANE và APB đồng dạng nên 
Lại có ( hai tam giác AEM và ABS đồng dạng)
Suy ra  nên trong tam giác AMS có NP//SM( định lí Talet đảo)
Do đó bài toán được chứng minh.
Bài 5
a. Giả sử kết luận của bài toán là sai, tức là trong ba đội bất kỳ thì có hai đội đã đấu với nhau rồi. Giả sử đội  đã gặp các đội 2, 3, 4, 5. Xét các bộ (1; 6; i) với i Є{7; 8; 9;…;12}, trong các bộ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Ngô Tùng Toại
Dung lượng: 139,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)