De+Da HSG Toán9 Hà Tĩnh - 2011
Chia sẻ bởi Cao Phuoc Dai |
Ngày 13/10/2018 |
38
Chia sẻ tài liệu: De+Da HSG Toán9 Hà Tĩnh - 2011 thuộc Đại số 9
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ TĨNH
KỲ THI CHỌN HỌC SINH GIỎI TỈNH CẤP THCS - NĂM HỌC 2010-2011
LỜI GIẢI MÔN TOÁN LỚP 9
(Lời giải gồm 02 trang)
Bài
Đáp án
Bài 1
a) (1). Đk: .
Khi m = 2: (1) trở thành
(thoả mãn)
b) Đặt (2), ta có : .
Khi đó (1) trở thành : (3)
Từ (2) ta được , với mỗi giá trị tùy ý của t, phương trình này luôn có đúng 1 nghiệm dương (nghiệm còn lại âm), mà (3) đã có 1 nghiệm t = 1, nên để (1) có đúng 2 nghiệm dương phân biệt thì điều kiện cần và đủ là : Phương trình (4) hoặc có nghiệm kép hoặc có 2 nghiệm phân biệt, trong đó có 1 nghiệm t = 1 . Điều đó tương đương với :
; (cả 2 giá trị thoả mãn)
Vậy cácgiá trị của m cần tìm là
Bài 2
a) Từ giả thiết
(*)
Từ (*) dễ thấy khi a, b, c thì , đpcm.
b) (1)
Do là nghiệm của (1) nên:
Biến đổi và rút gọn, ta được: (2)
Do a, b là các số hữu tỷ nên (2) chỉ xảy ra khi và chỉ khi
Thay các giá trị của a, b vào (1), ta có: .
. Vậy phương trình (1) có 3 nghiệm là:
Bài 3
Có thể giả sử: x > y, suy ra: (1). Đặt 2011 = a.
Khi đó: P =
P =
P (2)
Vì 3a - 2 >0, (do (1)) nên hàm số y = mX2 (với m = 3a - 2, ) đồng biến khi X > 0, suy ra P là hàm số đồng biến
Suy ra: Giá trị lớn nhất của P đạt được tại x = 2010 (y =1) và max P = 8 120 605 021.
Giá trị nhỏ nhất của P đạt được tại x = 1006 (y = 1005) và min P = 2 035 205 401.
Bài 4
a)
Từ giả thiết suy ra:
(đồng vị)
(đồng vị)
nên ~
2 (1)
Ta có 0 (cùng bù với do ME//ON)
Tương tự nên (2)
Từ (1), (2) ta được ~
b)
Ta có :
= . nên K thuộc cung chứa góc 1200 dựng trên đoạn MN.
Trên tia MK, lấy điểm I sao cho
KI = KN thì tam giác IKN là tam giác đều nên MK + KN = MI.
Do I thuộc cung chứa góc 600 của đường tròn đi qua 3 điểm M, N, I nên MI lớn nhất
(tức chu vi tam giác MKN lớn nhất, vì cạnh MN = R không đổi) khi và chỉ khi MI là
đường kính, khi đó K là trung điểm của cung MN nên đó là vị trí cần xác định của dây MN.
Bài 5
Gọi vế trái của bất đẳng thức cần chứng minh là P, ta cần chứng minh P (1)
Áp dụng bất đẳng thức Cô si cho 3 số dương, ta có:
(2)
Tương tự, ta có: (3) , (4)
Lấy (2) + (3) + (4) theo từng vế rồi rút gọn và áp dụng tiếp bất đẳng thức Cô si, ta được: , đpcm. (Dấu “=” xảy ra )
____________ Hết ___________
KỲ THI CHỌN HỌC SINH GIỎI TỈNH CẤP THCS - NĂM HỌC 2010-2011
LỜI GIẢI MÔN TOÁN LỚP 9
(Lời giải gồm 02 trang)
Bài
Đáp án
Bài 1
a) (1). Đk: .
Khi m = 2: (1) trở thành
(thoả mãn)
b) Đặt (2), ta có : .
Khi đó (1) trở thành : (3)
Từ (2) ta được , với mỗi giá trị tùy ý của t, phương trình này luôn có đúng 1 nghiệm dương (nghiệm còn lại âm), mà (3) đã có 1 nghiệm t = 1, nên để (1) có đúng 2 nghiệm dương phân biệt thì điều kiện cần và đủ là : Phương trình (4) hoặc có nghiệm kép hoặc có 2 nghiệm phân biệt, trong đó có 1 nghiệm t = 1 . Điều đó tương đương với :
; (cả 2 giá trị thoả mãn)
Vậy cácgiá trị của m cần tìm là
Bài 2
a) Từ giả thiết
(*)
Từ (*) dễ thấy khi a, b, c thì , đpcm.
b) (1)
Do là nghiệm của (1) nên:
Biến đổi và rút gọn, ta được: (2)
Do a, b là các số hữu tỷ nên (2) chỉ xảy ra khi và chỉ khi
Thay các giá trị của a, b vào (1), ta có: .
. Vậy phương trình (1) có 3 nghiệm là:
Bài 3
Có thể giả sử: x > y, suy ra: (1). Đặt 2011 = a.
Khi đó: P =
P =
P (2)
Vì 3a - 2 >0, (do (1)) nên hàm số y = mX2 (với m = 3a - 2, ) đồng biến khi X > 0, suy ra P là hàm số đồng biến
Suy ra: Giá trị lớn nhất của P đạt được tại x = 2010 (y =1) và max P = 8 120 605 021.
Giá trị nhỏ nhất của P đạt được tại x = 1006 (y = 1005) và min P = 2 035 205 401.
Bài 4
a)
Từ giả thiết suy ra:
(đồng vị)
(đồng vị)
nên ~
2 (1)
Ta có 0 (cùng bù với do ME//ON)
Tương tự nên (2)
Từ (1), (2) ta được ~
b)
Ta có :
= . nên K thuộc cung chứa góc 1200 dựng trên đoạn MN.
Trên tia MK, lấy điểm I sao cho
KI = KN thì tam giác IKN là tam giác đều nên MK + KN = MI.
Do I thuộc cung chứa góc 600 của đường tròn đi qua 3 điểm M, N, I nên MI lớn nhất
(tức chu vi tam giác MKN lớn nhất, vì cạnh MN = R không đổi) khi và chỉ khi MI là
đường kính, khi đó K là trung điểm của cung MN nên đó là vị trí cần xác định của dây MN.
Bài 5
Gọi vế trái của bất đẳng thức cần chứng minh là P, ta cần chứng minh P (1)
Áp dụng bất đẳng thức Cô si cho 3 số dương, ta có:
(2)
Tương tự, ta có: (3) , (4)
Lấy (2) + (3) + (4) theo từng vế rồi rút gọn và áp dụng tiếp bất đẳng thức Cô si, ta được: , đpcm. (Dấu “=” xảy ra )
____________ Hết ___________
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Cao Phuoc Dai
Dung lượng: 79,89KB|
Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)