ĐỀ CƯƠNG ÔN THI HỌC KÌ II TOÁN 9
Chia sẻ bởi Lê Tính Đồ |
Ngày 13/10/2018 |
39
Chia sẻ tài liệu: ĐỀ CƯƠNG ÔN THI HỌC KÌ II TOÁN 9 thuộc Đại số 9
Nội dung tài liệu:
ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II
NĂM HỌC 2011-2012
TẬP 1:
Bài 1: Giải phương trình và hệ phương trình:
a) x2 - 2x – 6 = 0 b) x4 + 2x2 = 0
c) d) x4 – (2 + )x2 + 2 = 0
Bài 2: Cho hàm số y = có đồ thị ( P) và y = có đồ thị (D)
Vẽ (P) và (D) trên cùng một hệ trục tọa độ.
Tìm tọa độ giao điểm của (P) và (D) bằng phép tính.
Bài 3: Tìm kích thước của hình chữ nhật có đường chéo dài 5 cm và chu vi là 14 cm.
Bài 4: Cho phương trình: x2 - 2(m – 1 )x + m2 – 1 = 0
Giải phương trình khi m = - 3
Với giá trị nào của m thì phương trình có nghiệm kép. Tính nghiệm còn lại.
Với giá trị nào của m thì phương trình có 1 nghiệm là -2. Tính nghiệm còn lại.
Bài 5: Cho đường tròn (O) và một điểm A nằm bên ngoài đường tròn . Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O) và một cát tuyến ADE không đi qua O. Gọi H là trung điểm của DE.
Chứng minh: 5 điểm A,B,C,H,O cùng thuộc một đường tròn.
Chứng minh HA là tia phân giác của góc BHC.
BC và DE cắt nhau tại I. Chứng minh: AB2 = AI.AH
BH cắt đường tròn (O) ở K. Chứng minh AE // CK.
TẬP 2:
Bài 1: Giải phương trình và hệ phương trình:
a) 4x4 –x2 – 5 = 0, b) c) c) 7x4 – 175x2 = 0
Bài 2:
Vẽ đồ thị hàm số y = - có đồ thị (P)
Tìm m để đường thẳng (d): y = 2x – m + 3 tiếp xúc với (P). Tìm tọa độ tiếp điểm.
Bài 3: Một tam giác vuông có tỉ số độ dài hai cạnh góc vuông bằng và diện tích tam giác đó là 96m2. Tính độ dài hai cạnh góc vuông.
Bài 4:Cho phương trình : x2 – 3x + m – 2 = 0
Tìm m để phương trình có nghiệm.
Tính giá trị : A = 3x12 – 2x1x2 + 3x22 theo m.
Bài 5: Cho tam giác ABC có 3 góc nhọn nội tiếp (O) với AB < AC. Tia phân giác của góc BAC cắt BC tại D và cắt (O) tại M.
Chứng minh OM BC.
Tiếp tuyến tại A cắt BC tại S. Chứng minh tam giác SAD cân.
Vẽ đường kính MN của (O) cắt AC tại F.Và BN cắt AM tại E.Chứng minh: EF // BC.
Cho AB = 4 cm, BC = 5 cm và CA = 6 cm. Chứng minh: tam giác SAB cân.
TẬP 3:
Bài 1: Giải phương trình và hệ phương trình:
a) 3x4 –5x2 –28 = 0, b) d)
Bài 2: Cho hàm số y = ax2 (P) và y = x – 1,5 (D)
Tìm a biết (P) đi qua điểm A(2; -2)
Vẽ (P) và (D) trên cùng mặt phẳng tọa độ ( với giá trị a tìm được ở câu a) )
Tìm tọa độ giao điểm của (P) và (D) bằng phép tính.
Bài 3: Một mảnh vườn hình chữ nhật có diện tích 252 m2. Nếu tăng chiều rộng 3m và giảm chiều dài 7m thì diện tích không đổi. Tính chu vi của mảnh vườn.
Bài 4: Cho phương trình x2 – 2(m + 3)x + 6 m = 0.
Tìm m để phương trình có nghiệm.
Tính A = x1x2 – x12 – x22 theo m.
Bài 5: Cho tam giác ABC nội tiếp trong đường tròn (O;R), biết góc BAC = 600.
Tính độ dài cung và độ dài dây BC theo R.
Vẽ đường cao AD và BE cắt nhau tại H. Chứng minh: CD.CB = CE.CA
Gọi M là điểm chính giữa cung nhỏ BC. Chứng minh: AM là tia phân giác Của góc OAH.
Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh: IO = IH.
TẬP 4:
Bài 1: Giải phương trình và hệ phương trình:
a) x4 –3x2 –4 = 0, b) d)
Bài 2: a) Vẽ trên cùng một hệ trục tọa độ , đồ
NĂM HỌC 2011-2012
TẬP 1:
Bài 1: Giải phương trình và hệ phương trình:
a) x2 - 2x – 6 = 0 b) x4 + 2x2 = 0
c) d) x4 – (2 + )x2 + 2 = 0
Bài 2: Cho hàm số y = có đồ thị ( P) và y = có đồ thị (D)
Vẽ (P) và (D) trên cùng một hệ trục tọa độ.
Tìm tọa độ giao điểm của (P) và (D) bằng phép tính.
Bài 3: Tìm kích thước của hình chữ nhật có đường chéo dài 5 cm và chu vi là 14 cm.
Bài 4: Cho phương trình: x2 - 2(m – 1 )x + m2 – 1 = 0
Giải phương trình khi m = - 3
Với giá trị nào của m thì phương trình có nghiệm kép. Tính nghiệm còn lại.
Với giá trị nào của m thì phương trình có 1 nghiệm là -2. Tính nghiệm còn lại.
Bài 5: Cho đường tròn (O) và một điểm A nằm bên ngoài đường tròn . Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O) và một cát tuyến ADE không đi qua O. Gọi H là trung điểm của DE.
Chứng minh: 5 điểm A,B,C,H,O cùng thuộc một đường tròn.
Chứng minh HA là tia phân giác của góc BHC.
BC và DE cắt nhau tại I. Chứng minh: AB2 = AI.AH
BH cắt đường tròn (O) ở K. Chứng minh AE // CK.
TẬP 2:
Bài 1: Giải phương trình và hệ phương trình:
a) 4x4 –x2 – 5 = 0, b) c) c) 7x4 – 175x2 = 0
Bài 2:
Vẽ đồ thị hàm số y = - có đồ thị (P)
Tìm m để đường thẳng (d): y = 2x – m + 3 tiếp xúc với (P). Tìm tọa độ tiếp điểm.
Bài 3: Một tam giác vuông có tỉ số độ dài hai cạnh góc vuông bằng và diện tích tam giác đó là 96m2. Tính độ dài hai cạnh góc vuông.
Bài 4:Cho phương trình : x2 – 3x + m – 2 = 0
Tìm m để phương trình có nghiệm.
Tính giá trị : A = 3x12 – 2x1x2 + 3x22 theo m.
Bài 5: Cho tam giác ABC có 3 góc nhọn nội tiếp (O) với AB < AC. Tia phân giác của góc BAC cắt BC tại D và cắt (O) tại M.
Chứng minh OM BC.
Tiếp tuyến tại A cắt BC tại S. Chứng minh tam giác SAD cân.
Vẽ đường kính MN của (O) cắt AC tại F.Và BN cắt AM tại E.Chứng minh: EF // BC.
Cho AB = 4 cm, BC = 5 cm và CA = 6 cm. Chứng minh: tam giác SAB cân.
TẬP 3:
Bài 1: Giải phương trình và hệ phương trình:
a) 3x4 –5x2 –28 = 0, b) d)
Bài 2: Cho hàm số y = ax2 (P) và y = x – 1,5 (D)
Tìm a biết (P) đi qua điểm A(2; -2)
Vẽ (P) và (D) trên cùng mặt phẳng tọa độ ( với giá trị a tìm được ở câu a) )
Tìm tọa độ giao điểm của (P) và (D) bằng phép tính.
Bài 3: Một mảnh vườn hình chữ nhật có diện tích 252 m2. Nếu tăng chiều rộng 3m và giảm chiều dài 7m thì diện tích không đổi. Tính chu vi của mảnh vườn.
Bài 4: Cho phương trình x2 – 2(m + 3)x + 6 m = 0.
Tìm m để phương trình có nghiệm.
Tính A = x1x2 – x12 – x22 theo m.
Bài 5: Cho tam giác ABC nội tiếp trong đường tròn (O;R), biết góc BAC = 600.
Tính độ dài cung và độ dài dây BC theo R.
Vẽ đường cao AD và BE cắt nhau tại H. Chứng minh: CD.CB = CE.CA
Gọi M là điểm chính giữa cung nhỏ BC. Chứng minh: AM là tia phân giác Của góc OAH.
Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh: IO = IH.
TẬP 4:
Bài 1: Giải phương trình và hệ phương trình:
a) x4 –3x2 –4 = 0, b) d)
Bài 2: a) Vẽ trên cùng một hệ trục tọa độ , đồ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Tính Đồ
Dung lượng: 162,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)