Day_so_viet_theo_qui_luat.doc
Chia sẻ bởi Nguyễn Thanh Vinh |
Ngày 13/10/2018 |
41
Chia sẻ tài liệu: day_so_viet_theo_qui_luat.doc thuộc Đại số 9
Nội dung tài liệu:
Dãy Số Viết theo quy luật
Bài toán 1 : Tính các tổng sau
A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
B = 1 + 3 + 32 + 33 + 34 + ... + 3100
Giải :
2A = 2 + 22 + 23 + ... + 210 + 211 . Khi đó : 2A – A = 211 – 1
3B = 3 + 32 + 33 + ... + 3100 + 3101. Khi đó : 3B – B = 2B = 3101 – 1 .
Vậy B =
Ta nghĩ tới bài toán tổng quát là :
Tính tổng S = 1 + a + a2 + a3 + ... + an , a ∈ Z+ , a > 1 và n ∈ Z+
Nhân 2 vế của S với a ta có aS = a + a2 + a3 + a4 + ... + an + an+1 . Rồi trừ cho S ta được :
aS – S = ( a – 1)S = an+1 – 1 . Vậy : 1 + a + a2 + a3 + ... + an = .
Từ đó ta có công thức : an+1 – 1 = ( a – 1)( 1 + a + a2 + a3 + ... + an) .
Bài tập áp dụng : Tính các tổng sau:
c) Chứng minh rằng : 1414 – 1 chia hết cho 3
d) Chứng minh rằng : 20092009 – 1 chia hết cho 2008
Bài toán 2 : Tính các tổng sau
A = 1 + 32 + 34 + 36 + 38 + ... + 3100
B = 7 + 73 + 75 + 77 + 79 + ... + 799
Giải :
A = 1 + 32 + 34 + 36 + 38 + ... + 3100 . Vấn đề đặt ra là nhân hai vế của A với số nào để khi trừ cho A thì một loạt các lũy thừa bị triệt tiêu ?.Ta thấy các số mũ liền nhau cách nhau 2 đơn vị nên ta nhân hai vế với 32 , rồi trừ cho A ta được :
32A = 32 + 34 + 36 + 38 + ... + 3100 + 3102
A = 1 + 32 + 34 + 36 + 38 + ... + 3100
32A – A = 3102 – 1 . Hay A( 32 – 1) = 3102 – 1 . Vậy A = ( 3102 – 1): 8
Từ kết quả này suy ra 3102 chia hết cho 8
2 ) Tương tự như trên ta nhân hai vế của B với 72 rồi trừ cho B , ta được :
72B = 73 + 75 + 77 + 79 + ... + 799 + 7101
B = 7 + 73 + 75 + 77 + 79 + ... + 799
72B – B = 7101 – 7 , hay B( 72 – 1) = 7101 – 7 . Vậy B = ( 7101 – 7) : 48
Tương tự như trên ta cũng suy ra 7101 – 7 chia hết cho 48 ; 7100- 1 chia hết cho 48
Trong một số trường hợp khi gặp bài toán tính tổng hữu hạn Sn = a1 + a2 + .... an (1)
Bằng cách nào đó ta biết được kết quả (dự đoán , hoặc bài toán chứng minh khi đã cho biết kết quả). Thì ta nên sử dụng phương pháp này và hầu như thế nào cũng chứng minh được .
Ví dụ 1 : Tính tổng Sn =1+3+5 +... + (2n -1 )
Thử trực tiếp ta thấy : S1 = 1
S2 = 1 + 3 =22
S3 = 1+ 3+ 5 = 9 = 32
... ... ...
Ta dự đoán Sn = n2
Với n = 1;2;3 ta thấy kết quả đúng
giả sử với n= k ( k 1) ta có Sk = k 2 (2)
ta cần phải chứng minh Sk + 1 = ( k +1 ) 2 ( 3)
Thật vậy cộng 2 vế của ( 2) với 2k +1 ta có
1+3+5 +... + (2k – 1) + ( 2k +1) = k2 + (2k +1)
vì k2 + ( 2k +1) = ( k +1) 2 nên ta có (3) tức là Sk+1 = ( k +1) 2
theo nguyên lý quy nạp bài toán
Bài toán 1 : Tính các tổng sau
A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
B = 1 + 3 + 32 + 33 + 34 + ... + 3100
Giải :
2A = 2 + 22 + 23 + ... + 210 + 211 . Khi đó : 2A – A = 211 – 1
3B = 3 + 32 + 33 + ... + 3100 + 3101. Khi đó : 3B – B = 2B = 3101 – 1 .
Vậy B =
Ta nghĩ tới bài toán tổng quát là :
Tính tổng S = 1 + a + a2 + a3 + ... + an , a ∈ Z+ , a > 1 và n ∈ Z+
Nhân 2 vế của S với a ta có aS = a + a2 + a3 + a4 + ... + an + an+1 . Rồi trừ cho S ta được :
aS – S = ( a – 1)S = an+1 – 1 . Vậy : 1 + a + a2 + a3 + ... + an = .
Từ đó ta có công thức : an+1 – 1 = ( a – 1)( 1 + a + a2 + a3 + ... + an) .
Bài tập áp dụng : Tính các tổng sau:
c) Chứng minh rằng : 1414 – 1 chia hết cho 3
d) Chứng minh rằng : 20092009 – 1 chia hết cho 2008
Bài toán 2 : Tính các tổng sau
A = 1 + 32 + 34 + 36 + 38 + ... + 3100
B = 7 + 73 + 75 + 77 + 79 + ... + 799
Giải :
A = 1 + 32 + 34 + 36 + 38 + ... + 3100 . Vấn đề đặt ra là nhân hai vế của A với số nào để khi trừ cho A thì một loạt các lũy thừa bị triệt tiêu ?.Ta thấy các số mũ liền nhau cách nhau 2 đơn vị nên ta nhân hai vế với 32 , rồi trừ cho A ta được :
32A = 32 + 34 + 36 + 38 + ... + 3100 + 3102
A = 1 + 32 + 34 + 36 + 38 + ... + 3100
32A – A = 3102 – 1 . Hay A( 32 – 1) = 3102 – 1 . Vậy A = ( 3102 – 1): 8
Từ kết quả này suy ra 3102 chia hết cho 8
2 ) Tương tự như trên ta nhân hai vế của B với 72 rồi trừ cho B , ta được :
72B = 73 + 75 + 77 + 79 + ... + 799 + 7101
B = 7 + 73 + 75 + 77 + 79 + ... + 799
72B – B = 7101 – 7 , hay B( 72 – 1) = 7101 – 7 . Vậy B = ( 7101 – 7) : 48
Tương tự như trên ta cũng suy ra 7101 – 7 chia hết cho 48 ; 7100- 1 chia hết cho 48
Trong một số trường hợp khi gặp bài toán tính tổng hữu hạn Sn = a1 + a2 + .... an (1)
Bằng cách nào đó ta biết được kết quả (dự đoán , hoặc bài toán chứng minh khi đã cho biết kết quả). Thì ta nên sử dụng phương pháp này và hầu như thế nào cũng chứng minh được .
Ví dụ 1 : Tính tổng Sn =1+3+5 +... + (2n -1 )
Thử trực tiếp ta thấy : S1 = 1
S2 = 1 + 3 =22
S3 = 1+ 3+ 5 = 9 = 32
... ... ...
Ta dự đoán Sn = n2
Với n = 1;2;3 ta thấy kết quả đúng
giả sử với n= k ( k 1) ta có Sk = k 2 (2)
ta cần phải chứng minh Sk + 1 = ( k +1 ) 2 ( 3)
Thật vậy cộng 2 vế của ( 2) với 2k +1 ta có
1+3+5 +... + (2k – 1) + ( 2k +1) = k2 + (2k +1)
vì k2 + ( 2k +1) = ( k +1) 2 nên ta có (3) tức là Sk+1 = ( k +1) 2
theo nguyên lý quy nạp bài toán
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thanh Vinh
Dung lượng: 501,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)