Đa thức CaSiO
Chia sẻ bởi Thái Thị Huyên |
Ngày 13/10/2018 |
38
Chia sẻ tài liệu: Đa thức CaSiO thuộc Đại số 9
Nội dung tài liệu:
Bài Toán Đa Thức
Ví dụ: Tính khi x = 1,816
Cách 1: Tính nhờ vào biến nhớ
Aán phím: 1 8165
Kết quả: 1.498465582
Cách 2: Tính nhờ vào biến nhớ
Aán phím: 18165
Kết quả: 1.498465582
Dạng . Tìm dư trong phép chia đa thức P(x) cho nhị thức ax + b
Khi chia đa thức P(x) cho nhị thức ax + b ta luôn được P(x)=Q(x)(ax+b) + r, trong đó r là một số (không chứa biến x). Thế ta được P() = r.
Như vậy để tìm số dư khi chia P(x) cho nhị thức ax+b ta chỉ cần đi tính r = P(), lúc này dạng toán 2.2 trở thành dạng toán 2.1.
Ví dụ: Tìm số dư trong phép chia:P=
Số dư r = 1,62414 - 1,6249 - 1,6245 + 1,6244 + 1,6242 + 1,624 – 723
Qui trình ấn máy (fx-500MS và fx-570 MS)
Ấn các phím:
Kết quả: r = 85,92136979
Bài tập
Bài 1: (Sở GD Đồng Nai, 1998) Tìm số dư trong phép chia
Bài 2: (Sở GD Cần Thơ, 2003) Cho . Tìm phần dư r1, r2 khi chia P(x) cho x – 2 và x-3. Tìm BCNN(r1,r2)?
Dạng. Xác định tham số m để đa thức P(x) + m chia hết cho
nhị thức ax + b
Khi chia đa thức P(x) + m cho nhị thức ax + b ta luôn được
P(x)=Q(x)(ax+b) + m + r. Muốn P(x) chia hết cho x – a thì m + r = 0 hay m = -r = - P(). Như vậy bài toán trở về dạng toán 2.1.
Ví dụ: Xác định tham số
1.1. (Sở GD Hà Nội, 1996, Sở GD Thanh Hóa, 2000). Tìm a để chia hết cho x+6.
- Giải -
Số dư
Qui trình ấn máy (fx-500MS và fx-570 MS)
Ấn các phím: 6
47213
Kết quả: a = -222
1.2. (Sở GD Khánh Hòa, 2001) Cho P(x) = 3x3 + 17x – 625. Tính a để P(x) + a2 chia hết cho x + 3?
-- Giải –
Số dư a2 = - => a =
Qui trình ấn máy (fx-500MS và fx-570 MS)
Kết quả: a = 27,51363298
Chú ý: Để ý ta thấy rằng P(x) = 3x3 + 17x – 625 = (3x2 – 9x + 44)(x+3) – 757. Vậy để P(x) chia hết cho (x + 3) thì a2 = 757 => a = 27,51363298 và a = - 27,51363298
Dạng. Tìm đa thức thương khi chia đa thức cho đơn thức
Ví dụ: Tìm thương và số dư trong phép chia x7 – 2x5 – 3x4 + x – 1 cho x – 5.
-- Giải --
Ta có: c = - 5; a0 = 1; a1 = 0; a2 = -2; a3 = -3; a4 = a5 = 0; a6 = 1; a7 = -1; b0 = a0 = 1.
Qui trình ấn máy (fx-500MS và fx-570 MS)
Vậy x7 – 2x5 – 3x4 + x – 1 = (x + 5)(x6 – 5x5 + 23x4 – 118x3 + 590x2 – 2590x + 14751) – 73756
Bài 1: Cho đa thức P(x) = 6x3 – 7x2 – 16x + m.
a. Tìm m để P(x) chia hết cho 2x + 3.
b. Với m vừa tìm được ở câu a hãy tìm số dư r khi cia P(x) cho 3x-2 và phân tích P(x) ra tích các thừa số bậc nhất.
c. Tìm m và n để Q(x) = 2x3 – 5x2 – 13x + n và P(x) cùng chia hết cho x-2.
d. Với n vừa tìm được phân tích Q(x) ra tích các thừa số bậc nhất.
Bài 2:
a. Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + f. Biết P(1) = 1
Ví dụ: Tính khi x = 1,816
Cách 1: Tính nhờ vào biến nhớ
Aán phím: 1 8165
Kết quả: 1.498465582
Cách 2: Tính nhờ vào biến nhớ
Aán phím: 18165
Kết quả: 1.498465582
Dạng . Tìm dư trong phép chia đa thức P(x) cho nhị thức ax + b
Khi chia đa thức P(x) cho nhị thức ax + b ta luôn được P(x)=Q(x)(ax+b) + r, trong đó r là một số (không chứa biến x). Thế ta được P() = r.
Như vậy để tìm số dư khi chia P(x) cho nhị thức ax+b ta chỉ cần đi tính r = P(), lúc này dạng toán 2.2 trở thành dạng toán 2.1.
Ví dụ: Tìm số dư trong phép chia:P=
Số dư r = 1,62414 - 1,6249 - 1,6245 + 1,6244 + 1,6242 + 1,624 – 723
Qui trình ấn máy (fx-500MS và fx-570 MS)
Ấn các phím:
Kết quả: r = 85,92136979
Bài tập
Bài 1: (Sở GD Đồng Nai, 1998) Tìm số dư trong phép chia
Bài 2: (Sở GD Cần Thơ, 2003) Cho . Tìm phần dư r1, r2 khi chia P(x) cho x – 2 và x-3. Tìm BCNN(r1,r2)?
Dạng. Xác định tham số m để đa thức P(x) + m chia hết cho
nhị thức ax + b
Khi chia đa thức P(x) + m cho nhị thức ax + b ta luôn được
P(x)=Q(x)(ax+b) + m + r. Muốn P(x) chia hết cho x – a thì m + r = 0 hay m = -r = - P(). Như vậy bài toán trở về dạng toán 2.1.
Ví dụ: Xác định tham số
1.1. (Sở GD Hà Nội, 1996, Sở GD Thanh Hóa, 2000). Tìm a để chia hết cho x+6.
- Giải -
Số dư
Qui trình ấn máy (fx-500MS và fx-570 MS)
Ấn các phím: 6
47213
Kết quả: a = -222
1.2. (Sở GD Khánh Hòa, 2001) Cho P(x) = 3x3 + 17x – 625. Tính a để P(x) + a2 chia hết cho x + 3?
-- Giải –
Số dư a2 = - => a =
Qui trình ấn máy (fx-500MS và fx-570 MS)
Kết quả: a = 27,51363298
Chú ý: Để ý ta thấy rằng P(x) = 3x3 + 17x – 625 = (3x2 – 9x + 44)(x+3) – 757. Vậy để P(x) chia hết cho (x + 3) thì a2 = 757 => a = 27,51363298 và a = - 27,51363298
Dạng. Tìm đa thức thương khi chia đa thức cho đơn thức
Ví dụ: Tìm thương và số dư trong phép chia x7 – 2x5 – 3x4 + x – 1 cho x – 5.
-- Giải --
Ta có: c = - 5; a0 = 1; a1 = 0; a2 = -2; a3 = -3; a4 = a5 = 0; a6 = 1; a7 = -1; b0 = a0 = 1.
Qui trình ấn máy (fx-500MS và fx-570 MS)
Vậy x7 – 2x5 – 3x4 + x – 1 = (x + 5)(x6 – 5x5 + 23x4 – 118x3 + 590x2 – 2590x + 14751) – 73756
Bài 1: Cho đa thức P(x) = 6x3 – 7x2 – 16x + m.
a. Tìm m để P(x) chia hết cho 2x + 3.
b. Với m vừa tìm được ở câu a hãy tìm số dư r khi cia P(x) cho 3x-2 và phân tích P(x) ra tích các thừa số bậc nhất.
c. Tìm m và n để Q(x) = 2x3 – 5x2 – 13x + n và P(x) cùng chia hết cho x-2.
d. Với n vừa tìm được phân tích Q(x) ra tích các thừa số bậc nhất.
Bài 2:
a. Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + f. Biết P(1) = 1
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Thái Thị Huyên
Dung lượng: 233,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)