Co' hướng dẫn giải luôn

Chia sẻ bởi Hoàng Quốc Huy | Ngày 13/10/2018 | 34

Chia sẻ tài liệu: co' hướng dẫn giải luôn thuộc Đại số 9

Nội dung tài liệu:


ĐỀ 1
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm )
Cho hàm số  có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C) .
Chứng minh rằng đường thẳng (d) : y = mx  42m luôn đi qua một điểm cố định của đường cong (C) khi m thay đổi . .
Câu II ( 3,0 điểm )
Giải phương trình 
Tính tìch phân : I = 
Viết phương trình tiếp tuyến với đồ thị , biết rằng tiếp tuyến này song song với đường thẳng (d) :  .
Câu III ( 1,0 điểm )
Cho hình chóp S,ABC . Gọi M là một điểm thuộc cạnh SA sao cho MS = 2 MA . Tính tỉ số thể tích của hai khối chóp M.SBC và M.ABC .
II . PHẦN RIÊNG ( 3 điểm )
Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó
1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz và có trọng tâm G(1;2;) Hãy tính diện tích tam giác ABC .
Câu V.a ( 1,0 điểm ) :
Cho hình phẳng (H) giới hạn bởi các đường ( C ) : y = , (d) : y =  và trục hoành . Tính diện tích của hình phẳng (H) .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A’B’C’D’ . Biết A’(0;0;0) , B’(a;0;0),D’(0;a;0) , A(0;0;a) với a>0 . Gọi M,N lần lượt là trung điểm các cạnh AB và B’C’ .
a. Viết phương trình mặt phẳng (P) đi qua M và song song với hai đường thẳng AN và BD’ ..
b. Tính góc và khoảng cách giữa hai đường thẳng AN và BD’ .
Câu V.b ( 1,0 điểm ) :
Tìm các hệ số a,b sao cho parabol (P) :  tiếp xúc với hypebol (H) : Tại điểm M(1;1)














HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm )
a) 2đ

x
1


 +
 +

y













b)
Ta có : y = mx  42m 
Hệ thức (*) đúng với mọi m 
Đường thẳng y = mx  42m luôn đi qua
điểm cố định A(2; 4) thuộc (C)
( Vì tọa độ điểm A thỏa mãn phương trình  )
Câu II ( 3,0 điểm )
a) 1đ Điều kiện : x > 1 .

Đặt :  thì 

b) 1đ Đặt 

c) 1đ Đường thẳng (d) 
Gọi  là tiếp tuyến cần tìm , vì  song song với (d) nên tiếp tuyến có hệ số góc k = 
Do đó : 
 là tiếp tuyến của ( C )  hệ sau có nghiệm 

Câu III ( 1,0 điểm )
Ta có :  
Từ (1) , (2) suy ra : 
II . PHẦN RIÊNG ( 3 điểm )
1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Vì các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz nên ta gọi A(x;0;0) , B(0;y;0),
C(0;0;z) . Theo đề :
G(1;2;) là trọng tâm tam giác ABC  0,5đ
Vậy tọa độ của các đỉnh là A(3;0;0) , B(0;6;0), C(0;0;) 0,25đ
Mặt khác :  0,25đ
Phương trình mặt phẳng (ABC) :  0,25đ
nên  0,25đ
Mặt khác
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Hoàng Quốc Huy
Dung lượng: 1,85MB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)