CHUYỀN ĐỀ ỨNG DỤNG HỆ THỨC VI-ÉT VÀO CÁC DẠNG BÀI TẬP
Chia sẻ bởi Nguyễn Diễm Hằng |
Ngày 13/10/2018 |
48
Chia sẻ tài liệu: CHUYỀN ĐỀ ỨNG DỤNG HỆ THỨC VI-ÉT VÀO CÁC DẠNG BÀI TẬP thuộc Đại số 9
Nội dung tài liệu:
A. Lý thuyết:
+ Nếu x1, x2 là hai nghiệm của phương trình bậc hai ax2 + bx + c = 0 thì
S = x1 +x2 =P = x1.x2 =
+ Nếu hai số x1 , x2 có tổng x1 + x2 = S và tích x1x2 = P thì hai số đó là các nghiệm của phương trình X2 - SX + P = 0 (Định lý Viét đảo)
B. Nội dung:
Vận dụng Định lý Viét và Viét đảo ta chia làm các dạng bài tập sau:
Dạng 1:Nhẩmnghiệm của phương trình bậc hai
+ Nếu phương trình ax2 + bx + c = 0 (a khác 0) có a + b + c = 0 thì phương trình có một nghiệm là x1= 1, còn nghiệm kia là x2 =
+ Nếu phương trình ax2 + bx + c = 0 (a khác 0) có a - b + c = 0 thì phương trình có một nghiệm là x1= -1, còn nghiệm kia là x2 = -
Ví dụ 1: Không giải phương trình hãy nhẩm nghiệm của các phương trình sau:
a) 3x2 - 5x + 2 = 0
b) -7x2 - x + 6 = 0
Giải:
Ta có a + b + c = 3 - 5 + 2 = 0
nên phương trình có hai nghiệmx1 = 1, x2 = =
Ta có a - b + c = -7 +1 + 6 = 0
nên phương trình có hai nghiệmx1= -1, x2 = - =
Trong trường hợp phương trình có nghiệm nguyên đơn giản ta có thể nhẩm nghiệm theo hệ thức Viét, xét ví dụ sau:
Ví dụ 2: Nhẩm nghiệm của phương trình sau
a) x2 - 7x + 10 = 0 b) x2 + 6x +8 = 0
Giải:
a) Nếu phương trình có nghiệm x1, x2 thì theo hệ thức Viét ta có:
x1+ x2 = 7 và x1x2 = 10 ta nhẩm được hai nghiệm là x1= 2, x2 = 5
b) Tương tự như câu a) ta có x1 + x2 = -6 và x1x2 = 8 nên x1 = -2, x2 = -4
Dạng2:Tìm điều kiện của tham số khi biết một nghiệm của phương trình đã cho
Ví dụ1: Cho phương trình 2x2 - px + 5 = 0.
Biết phương trình có một nghiệm là 2. Tìm p và tìm nghiệm còn lại
Giải:
Cách 1: Thay x = 2 vào phương trình ta được p = . Theo hệ thức Viét ta có
x1x2 = mà x1= 2 nên x2 =
Cách 2: Vì phương trình có nghiệm nên theo hệ thức Viét ta cóx1 x2 = mà x1 = 2 nên x2 = .
Mặt khác x1+ x2 = (= 2 + ( p =
Ví dụ 2: Cho phương trình x2 + mx - 3 = 0.
Biết phương trình có một nghiệm là 3. Tìm m và tìm nghiệm còn lại
Giải:
Tương tự như ví dụ trên ta tìm được m = -2 và nghiệm còn lại là x = -1
Dạng 3: Xét dấu các nghiệm của phương trình bậc hai
Phương trình bậc hai ax2 + bx + c = 0 nếu có nghiệm thoả mãn:
a) P < 0 thì hai nghiệm đó trái dấu
b) P > 0 và S > 0 thì hai nghiệm đều dương
c) P > 0 và S < 0 thì hai nghiệm đều âm
Ví dụ1 : Không giải phương trình xét dấu các nghiệm của các phương trình sau:
a) x2 - 2 x + 4 = 0 b) x2 + 5x - 1 = 0
c) x2 - 2x + 1 =0 d) x2 + 9x + 6 = 0
Giải:
a) Ta có ( `= -1 < 0 nên phương trình vô nghiệm
b) Ta có P < 0 nên phương trình có hai nghiệm trái dấu
c) Ta có (` = 2; S = 2> 0; P = 1 > 0 nên phương trình có hai nghiệm dương phân biệt
d) Ta có ( =57; S = -9 < 0; P = 6 > 0 nên phương trình có hai nghiệm âm phân biệt
Ví dụ 2: Tìm điều kiện của m để phương trình sau:2x2 + (2m - 1)x + m - 1 = 0
a) Có hai nghiệm khác dấu
b) Có hai nghiệm phân biệt đều âm
c) Có hai nghiệm phân biệt đều dương
d) Có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau
Giải:
a) Phương trình có hai nghiệm khác dấu khi P < 0 hay m - 1 < 0 ( m < 1
b) Phương trình có hai
+ Nếu x1, x2 là hai nghiệm của phương trình bậc hai ax2 + bx + c = 0 thì
S = x1 +x2 =P = x1.x2 =
+ Nếu hai số x1 , x2 có tổng x1 + x2 = S và tích x1x2 = P thì hai số đó là các nghiệm của phương trình X2 - SX + P = 0 (Định lý Viét đảo)
B. Nội dung:
Vận dụng Định lý Viét và Viét đảo ta chia làm các dạng bài tập sau:
Dạng 1:Nhẩmnghiệm của phương trình bậc hai
+ Nếu phương trình ax2 + bx + c = 0 (a khác 0) có a + b + c = 0 thì phương trình có một nghiệm là x1= 1, còn nghiệm kia là x2 =
+ Nếu phương trình ax2 + bx + c = 0 (a khác 0) có a - b + c = 0 thì phương trình có một nghiệm là x1= -1, còn nghiệm kia là x2 = -
Ví dụ 1: Không giải phương trình hãy nhẩm nghiệm của các phương trình sau:
a) 3x2 - 5x + 2 = 0
b) -7x2 - x + 6 = 0
Giải:
Ta có a + b + c = 3 - 5 + 2 = 0
nên phương trình có hai nghiệmx1 = 1, x2 = =
Ta có a - b + c = -7 +1 + 6 = 0
nên phương trình có hai nghiệmx1= -1, x2 = - =
Trong trường hợp phương trình có nghiệm nguyên đơn giản ta có thể nhẩm nghiệm theo hệ thức Viét, xét ví dụ sau:
Ví dụ 2: Nhẩm nghiệm của phương trình sau
a) x2 - 7x + 10 = 0 b) x2 + 6x +8 = 0
Giải:
a) Nếu phương trình có nghiệm x1, x2 thì theo hệ thức Viét ta có:
x1+ x2 = 7 và x1x2 = 10 ta nhẩm được hai nghiệm là x1= 2, x2 = 5
b) Tương tự như câu a) ta có x1 + x2 = -6 và x1x2 = 8 nên x1 = -2, x2 = -4
Dạng2:Tìm điều kiện của tham số khi biết một nghiệm của phương trình đã cho
Ví dụ1: Cho phương trình 2x2 - px + 5 = 0.
Biết phương trình có một nghiệm là 2. Tìm p và tìm nghiệm còn lại
Giải:
Cách 1: Thay x = 2 vào phương trình ta được p = . Theo hệ thức Viét ta có
x1x2 = mà x1= 2 nên x2 =
Cách 2: Vì phương trình có nghiệm nên theo hệ thức Viét ta cóx1 x2 = mà x1 = 2 nên x2 = .
Mặt khác x1+ x2 = (= 2 + ( p =
Ví dụ 2: Cho phương trình x2 + mx - 3 = 0.
Biết phương trình có một nghiệm là 3. Tìm m và tìm nghiệm còn lại
Giải:
Tương tự như ví dụ trên ta tìm được m = -2 và nghiệm còn lại là x = -1
Dạng 3: Xét dấu các nghiệm của phương trình bậc hai
Phương trình bậc hai ax2 + bx + c = 0 nếu có nghiệm thoả mãn:
a) P < 0 thì hai nghiệm đó trái dấu
b) P > 0 và S > 0 thì hai nghiệm đều dương
c) P > 0 và S < 0 thì hai nghiệm đều âm
Ví dụ1 : Không giải phương trình xét dấu các nghiệm của các phương trình sau:
a) x2 - 2 x + 4 = 0 b) x2 + 5x - 1 = 0
c) x2 - 2x + 1 =0 d) x2 + 9x + 6 = 0
Giải:
a) Ta có ( `= -1 < 0 nên phương trình vô nghiệm
b) Ta có P < 0 nên phương trình có hai nghiệm trái dấu
c) Ta có (` = 2; S = 2> 0; P = 1 > 0 nên phương trình có hai nghiệm dương phân biệt
d) Ta có ( =57; S = -9 < 0; P = 6 > 0 nên phương trình có hai nghiệm âm phân biệt
Ví dụ 2: Tìm điều kiện của m để phương trình sau:2x2 + (2m - 1)x + m - 1 = 0
a) Có hai nghiệm khác dấu
b) Có hai nghiệm phân biệt đều âm
c) Có hai nghiệm phân biệt đều dương
d) Có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau
Giải:
a) Phương trình có hai nghiệm khác dấu khi P < 0 hay m - 1 < 0 ( m < 1
b) Phương trình có hai
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Diễm Hằng
Dung lượng: 240,76KB|
Lượt tài: 1
Loại file: docx
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)