CHUYÊN ĐỀ ỨNG DỤNG CỦA HỆ THỨC VI-ET
Chia sẻ bởi Nguyễn Thiên Hương |
Ngày 13/10/2018 |
60
Chia sẻ tài liệu: CHUYÊN ĐỀ ỨNG DỤNG CỦA HỆ THỨC VI-ET thuộc Đại số 9
Nội dung tài liệu:
CHUYÊN ĐỀ
ỨNG DỤNG
CỦA HỆ THỨC VI-ÉT
NỘI DUNG CHUYÊN ĐỀ :
ỨNG DỤNG CỦA HỆ THỨC VI-ÉT TRONG GIẢI TOÁN
Cho phương trình bậc hai: ax2 + bx + c = 0 (a(0) (*)
Có hai nghiệm ;
Suy ra:
Vậy đặt : - Tổng nghiệm là S : S =
- Tích nghiệm là P : P =
Như vậy ta thấy giữa hai nghiệm của phương trình (*) có liên quan chặt chẽ với các hệ số a, b, c. Đây chính là nội dung của Định lí VI-ÉT, sau đây ta tìm hiểu một số ứng dụng của định lí này trong giải toán.
I. NHẨM NGHIỆM CỦA PHƯƠNG TRÌNH :
1. Dạng đặc biệt:
Xét phương trình (*) ta thấy :
a) Nếu cho x = 1 thì ta có (*) ( a.12 + b.1 + c = 0 ( a + b + c = 0
Như vây phương trình có một nghiệm và nghiệm còn lại là
b) Nếu cho x = 1 thì ta có (*) ( a.(1)2 + b(1) + c = 0 ( a b + c = 0
Như vậy phương trình có một nghiệm là và nghiệm còn lại là
Ví dụ: Dùng hệ thức VI-ÉT để nhẩm nghiệm của các phương trình sau:
1) (1) 2) (2)
Ta thấy :
Phương trình (1) có dạng a b + c = 0 nên có nghiệm và
Phương trình (2) có dạng a + b + c = 0 nên có nghiệm và
Bài tập áp dụng: Hãy tìm nhanh nghiệm của các phương trình sau:
1. 2.
3. 4.
2. Cho phương trình , có một hệ số chưa biết, cho trước một nghiệm tìm nghiệm còn lại và chỉ ra hệ số của phương trình :
Vídụ: a) Phương trình . Có một nghiệm bằng 2, tìm p và nghiệm thứ hai.
b) Phương trình có một nghiệm bằng 5, tìm q và nghiệm thứ hai.
c) Cho phương trình : , biết hiệu 2 nghiệm bằng 11. Tìm q và hai nghiệm của phương trình.
d) Tìm q và hai nghiệm của phương trình : , biết phương trình có 2 nghiệm và có một nghiệm bằng 2 lần nghiệm kia.
Bài giải:
a) Thay v à phương trình ban đ ầu ta đ ư ợc :
T ừ suy ra
b) Thay v à phương trình ban đ ầu ta đ ư ợc
T ừ suy ra
c) Vì vai trò của x1 và x2 bình đẳng nên theo đề bài giả sử và theo VI-ÉT ta có , ta giải hệ sau:
Suy ra
d) Vì vai trò của x1 và x2 bình đẳng nên theo đề bài giả sử và theo VI-ÉT ta có . Suy ra
Với th ì
Với th ì
II. LẬP PHƯƠNG TRÌNH BẬC HAI
1. Lập phương trình bậc hai khi biết hai nghiệm
Ví dụ : Cho ; lập một phương trình bậc hai chứa hai nghiệm trên
Theo hệ thức VI-ÉT ta có vậy là nghiệm của phương trình có dạng:
Bài tập áp dụng:
1. x1 = 8 và x2 = -3
2. x1 = 3a và x2 = a
3. x1 = 36 và x2 = -104
4. x1 = và x2 =
2. Lập phương trình bậc hai có hai nghiệm thoả mãn biểu thức chứa hai nghiệm của một phương trình cho trước:
V í dụ: Cho phương trình : có 2 nghiệm phân biệt . Không giải phương trình trên, hãy lập phương trình bậc 2 có ẩn là y thoả mãn : và
Theo h ệ th ức VI- ÉT ta c ó:
Vậy phương trình cần lập có dạng:
hay
Bài tập áp dụng:
1/ Cho phương trình có 2 nghiệm phân biệt . Không giải phương trình, Hãy lập phương trình bậc hai có các nghiệm và
(Đáp số: hay )
2/ Cho phương
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thiên Hương
Dung lượng: 259,03KB|
Lượt tài: 6
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)