Chuyen de quy tich 8
Chia sẻ bởi Phan Thi Hong Tham |
Ngày 13/10/2018 |
41
Chia sẻ tài liệu: chuyen de quy tich 8 thuộc Hình học 8
Nội dung tài liệu:
Chuyên đề: tìm tập hợp điểm (quỹ tích)
A.Các bước làm
1 - Dự đoán
2 - Phần thuận: CMR điểm M có tính chất a thì điểm M thuộc hình H.
Tìm giới hạn (nếu có) khi đó điểm M không thuộc toàn bộ hình H mà thuộc hình H’ là một bộ phận của H
3 - Phần đảo : Lấy điểm M bất kì thuộc hình H’ vẽ hình tạo ra các điểm chuyển động khác được nêu trong đề bài rồi CMR diểm M có tính chất a.
4 – Kết luận: Tập hợp các điểm M có tính chất a là hình H’
B- Bài tập
Bài 1: Cho tam giác ABC cố định một điểm M di chuyển trên cạnh BC.Tim quỹ tích trung điểm I của đoạn AM.
Bài 2: Cho tam giác ABC cố định một điểm M nằm trên cạnh BC. Từ M kẻ đường thẳng song song với AB, AC cắt AC và AB lần lượt tại D và E. Tìm quỹ tích trung điểm I của đoạn AM khi M di chuyển trên cạnh BC.
Bài 3 Cho tam giác ABC cân ở A. Điểm M di động trên cạnh BC. Từ M kẻ đường thẳng song song với AB, AC cắt AB và AC lần lượt tại P và N.
a) Chứng minh tam giác MNC cân. Suy ra chu vi tứ giác APMN không phụ thuộc vị trí điểm M trên cạnh BC
b)Tìm quỹ tích tâm hình bình hành APMN . Xác định vị trí M để NP ngắn nhất.
Bài 4: Cho tam giác ABC cân cố định(AB = AC). Hai điểm D và E theo thứ tự chuyển động trên các cạnh bên AB, AC sao cho AD = CE. Tìm tập hợp các trung điểm M của DE
Bài 5: Cho đoạn thẳng AB cố định, điểm M chuyển động trên đoạn thẳng đó. Vẽ trên cùng một nửa mặt phẳng bờ AB các tam giác đều AMC, BMD. Tìm tập hợp các trung điểm I của CD. (Cũng câu hỏi này trong đó các tam giác đều vẽ trên hai nửa mặt phẳng đối nhau bờ AB).
Bài 6: Cho đoạn thẳng AB, điểm D nằm giữa A và B. Trên một nửa mặt phẳng bờ AB ta lấy các điểm E và F sao cho tam giác EAD cân tại E, tam giác FBD cân tại F và gócE = gócF = m0 . tìm quỹ tích trung điểm O của EF khi D di động trên đoạn thẳng AB
Bài 7: Cho đoạn thẳng AB và một điểm M chuyển động trên AB.Trên cùng một nửa mặt phẳng bờ AB, vẽ hai hình vuôngAMPQ và BMCE, gọi O và O’ lần lượt là tâm hai hình vuông, BC cắt AP tại K, AC cắt BP tại H . Gọi I là trung điểm của đoạn OO’
a) Tứ giác OKO’M là hình gì ?vì sao?
b) CMR: BH vuông góc với AC
c)Chứng minh E,K,Q,H thẳng hàng.
d) Chứng minh đường thẳng EQ luôn luôn đI qua một điểm cố định khi M di chuyển trên AB.
e) Điểm M ở vị trí nào trên đoạn AB thì tứ giác OKO’M là hình vuông?
f)Tìm tập hợp các điểm I khi M di chuyển trên AB ?( Cũng câu hỏi này trong đó các hình vuông vẽ trên hai nửa mặt phẳng đối nhau bờ AB).
Bài 8: Cho tam giác ABC cân tại A(cố định). Từ một điểm D trên đá
A.Các bước làm
1 - Dự đoán
2 - Phần thuận: CMR điểm M có tính chất a thì điểm M thuộc hình H.
Tìm giới hạn (nếu có) khi đó điểm M không thuộc toàn bộ hình H mà thuộc hình H’ là một bộ phận của H
3 - Phần đảo : Lấy điểm M bất kì thuộc hình H’ vẽ hình tạo ra các điểm chuyển động khác được nêu trong đề bài rồi CMR diểm M có tính chất a.
4 – Kết luận: Tập hợp các điểm M có tính chất a là hình H’
B- Bài tập
Bài 1: Cho tam giác ABC cố định một điểm M di chuyển trên cạnh BC.Tim quỹ tích trung điểm I của đoạn AM.
Bài 2: Cho tam giác ABC cố định một điểm M nằm trên cạnh BC. Từ M kẻ đường thẳng song song với AB, AC cắt AC và AB lần lượt tại D và E. Tìm quỹ tích trung điểm I của đoạn AM khi M di chuyển trên cạnh BC.
Bài 3 Cho tam giác ABC cân ở A. Điểm M di động trên cạnh BC. Từ M kẻ đường thẳng song song với AB, AC cắt AB và AC lần lượt tại P và N.
a) Chứng minh tam giác MNC cân. Suy ra chu vi tứ giác APMN không phụ thuộc vị trí điểm M trên cạnh BC
b)Tìm quỹ tích tâm hình bình hành APMN . Xác định vị trí M để NP ngắn nhất.
Bài 4: Cho tam giác ABC cân cố định(AB = AC). Hai điểm D và E theo thứ tự chuyển động trên các cạnh bên AB, AC sao cho AD = CE. Tìm tập hợp các trung điểm M của DE
Bài 5: Cho đoạn thẳng AB cố định, điểm M chuyển động trên đoạn thẳng đó. Vẽ trên cùng một nửa mặt phẳng bờ AB các tam giác đều AMC, BMD. Tìm tập hợp các trung điểm I của CD. (Cũng câu hỏi này trong đó các tam giác đều vẽ trên hai nửa mặt phẳng đối nhau bờ AB).
Bài 6: Cho đoạn thẳng AB, điểm D nằm giữa A và B. Trên một nửa mặt phẳng bờ AB ta lấy các điểm E và F sao cho tam giác EAD cân tại E, tam giác FBD cân tại F và gócE = gócF = m0 . tìm quỹ tích trung điểm O của EF khi D di động trên đoạn thẳng AB
Bài 7: Cho đoạn thẳng AB và một điểm M chuyển động trên AB.Trên cùng một nửa mặt phẳng bờ AB, vẽ hai hình vuôngAMPQ và BMCE, gọi O và O’ lần lượt là tâm hai hình vuông, BC cắt AP tại K, AC cắt BP tại H . Gọi I là trung điểm của đoạn OO’
a) Tứ giác OKO’M là hình gì ?vì sao?
b) CMR: BH vuông góc với AC
c)Chứng minh E,K,Q,H thẳng hàng.
d) Chứng minh đường thẳng EQ luôn luôn đI qua một điểm cố định khi M di chuyển trên AB.
e) Điểm M ở vị trí nào trên đoạn AB thì tứ giác OKO’M là hình vuông?
f)Tìm tập hợp các điểm I khi M di chuyển trên AB ?( Cũng câu hỏi này trong đó các hình vuông vẽ trên hai nửa mặt phẳng đối nhau bờ AB).
Bài 8: Cho tam giác ABC cân tại A(cố định). Từ một điểm D trên đá
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phan Thi Hong Tham
Dung lượng: 60,00KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)