Chuyên đề hàm số lớp 9

Chia sẻ bởi Nguyễn Văn Nhất | Ngày 13/10/2018 | 44

Chia sẻ tài liệu: chuyên đề hàm số lớp 9 thuộc Đại số 9

Nội dung tài liệu:

CHỦ ĐỀ 3: HÀM SỐ VÀ ĐỒ THỊ

A.KIẾN THỨC CƠ BẢN :
1. Khái niệm hàm số:
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được một và chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x được gọi là biến số .
Kí hiệu là y = f(x), y = g(x),…
Khi x thay đổi mà y luôn nhận một giá trị không đổi thì hàm số y được gọi là hàm hằng.
2. Đồ thị của hàm số:
Trong mặt phẳng tọa độ Oxy, tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) được gọi là đồ thị hàm số y = f(x).
3. Tập xác định của hàm số :
TXĐ của hàm số y = f(x) là tập hợp các giá trị của biến để biểu thức f(x) có nghĩa.
4. Hàm số đồng biến, hàm số nghịch biến.
Cho hàm số y = f(x) xác định với mọi x thuộc .
a) Nếu giá trị của biến x tăng lên mà giá trị tương ứng của f(x) cũng tăng theo thì ta nói hàm số y = f(x) là hàm số đồng biến trên . (Hoặc : với x1, x2 bất kỳ thuộc  ; nếu x1 < x2 mà f(x1) < f(x2) thì hàm số y = f(x) đồng biến trên )
b) Nếu giá trị của biến x tăng lên mà giá trị tương ứng của f(x) lại giảm đi thì ta nói hàm số y = f(x) là hàm số nghịch biến trên . (Hoặc : với x1, x2 bất kỳ thuộc  ; nếu x1 < x2 mà f(x1) > f(x2) thì hàm số y = f(x) nghịch biến trên )
5. Hàm số bậc nhất y = ax + b (a  0)
a) Định nghĩa: Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b ,trong đó a, b là các số cho trước , a  0.
Hàm số bậc nhất xác định với mọi x thuộc 
b)Tính chất hàm số bậc nhất :hàm số đồng biến trên  khi a > 0, nghịch biến trên 
khi a < 0.
Chú ý : Khi a = 0, ta có hàm số y = b là hàm hằng.
c) Đồ thị hàm số bậc nhất: Đồ thị hàm số bậc nhất y = ax + b (a  0) là một đường thẳng. Ta còn gọi đồ thi của hàm số y = ax + b là đường thẳng y = ax + b. Đường thẳng này có các đặc điểm sau :
+ Cắt trục tung tại điểm (0; b); b gọi là tung độ gốc của đường thẳng.
+ Cắt trục hoành tại điểm ().
Chú ý : Khi b = 0, đồ thị đi qua gốc tọa độ.
Nếu a > 0 thì đường thẳng “đi lên” từ trái qua phải. Nếu a < 0 thì đường thẳng
“đi xuống” từ trái qua phải.
d) Vị trí tương đối của hai đường thẳng:
Cho hai đường thẳng y= ax + b (a 0) và đường thẳng y = a’x + b’(a’  0)
*Hai đường thẳng song song với nhau khi và chỉ khi a = a’và b b’
*Hai đường thẳng trùng nhau khi và chỉ khi a = a’và b = b’
*Hai đường thẳng cắt nhau khi và chỉ khi a a’
Trường hợp riêng : Hai đường thẳng vuông góc với nhau khi và chỉ khi a . a’= -1
e) Hệ số góc của đường thẳng:
Trong mặt phẳng tọa độ Oxy cho đường thẳng y= ax + b(a 0). Khi ta nói góc α là góc tạo bởi đường thẳng y= ax + b và trục Ox, ta hiểu đó là góc tạo bởi tia A x và tia AT , trong đó A là giao điểm của đường thẳng y= ax + b và trục Ox,T là điểm thuộc đường thẳng y= ax+b có tung độ dương.
Ta gọi a là hệ số góc của đường thẳng y= ax + b.
Ta có :
*Nếu a > 0 thì α là góc nhọn và a càng lớn thì góc càng lớn.
*Nếu a <0 thì α là góc tù và a càng lớn lớn.
* Nếu a > 0 thì tan α = a. Nếu a < 0 thì tan = - a.
6. Hàm số y = ax2 (a 0) :
a) Hàm số y = ax2 xác định với mọi x thuộc và có tính chất sau:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Văn Nhất
Dung lượng: 1,11MB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)