Chuyen de boi duong HSG casio
Chia sẻ bởi Nguyễn Anh Đức |
Ngày 13/10/2018 |
43
Chia sẻ tài liệu: chuyen de boi duong HSG casio thuộc Đại số 9
Nội dung tài liệu:
Chương 1: Kỹ năng sử dụng máy tính
Chương 2: Đa thức
Chương 3: Giải phương trình và hệ phương trình
Chương 4: Liên phân số
Chương 5: Một số ứng dụng của hệ đếm
Chương 6: Dãy số truy hồi
Chương 7: Phương trình sai phân bậc hai và ứng dụng
Chương 8: Máy tính điện tử trợ giúp giải toán
Chương 9: Tìm nghiệm gần đúng của phương trình
Chương 10: Thống kê một biến
Chương 11: Bài Toán lãi kép
Chương 12: Đề tham khảo
Bài 1: (Thi khu vực, 2001) Tính:
a.
b.
c.
d.
e.Tìm x biết:
f. Tìm y biết:
Bài 2: (Thi khu vực, 2002) Tính giá trị của x từ các phương trình sau:
a.
b.
Bài 3: (Thi khu vực, 2001, đề dự bị)
a. Tìm 12% của biết:
b. Tính 2,5% của
c. Tính 7,5% của
d. Tìm x, nếu:
Thực hiện các phép tính:
e.
f.
g.
h.
i.
k.
Bài 4: (Thi khu vực 2003, đề dự bị) Tính:
a.
b.
Bài 5: (Thi khu vực 2001)
a. Hãy sắp xếp các số sau đây theo thứ tự tăng dần:
b. Tính giá trị của biểu thức sau:
c. Tính giá trị của biểu thức sau:
Ví dụ: Tính T =
Dùng máy tính trực tiếp cho kết quả là: 9,999999971 x 1026
Biến đổi: T
Dùng máy tính tính 999 999 999
Vậy
Như vậy thay vì kết qủa nhận được là một số nguyên thì thế trực tiếp vào máy tính ta nhận được kết quả là số dạng a.10n (sai số sau 10 chữ số của a).
( Trong các kỳ thi cấp tỉnh dạng bài này thường chiếm 40% - 60% số điểm, trong các kỳ thi cấp khu vực dạng này chiếm khoảng 20% - 40%.
( Trong dạng bài này thí sinh cần lưu ý: số thập phân vô hạn tuần hoàn (ví dụ: 0,(4); 0,1(24); 9,895862…; … thí sinh cần biết cách biến đổi các số này sang số thập phân đúng và làm việc với các số đúng đó.
II. Dạng 2: ĐA THỨC
Dạng 2.1. Tính giá trị của đa thức
Bài toán: Tính giá trị của đa thức P(x,y,…) khi x = x0, y = y0; …
Phương pháp 1: (Tính trực tiếp) Thế trực tiếp các giá trị của x, y vào đa thức để tính.
Phương pháp 2: (Sơ đồ Horner, đối với đa thức một biến)
Viết dưới dạng
Vậy Đặt b0 = a0; b1 = b0x0 + a1; b2 = b1x0 + a2; …; bn = bn-1x0 + an. Suy ra: P(x0) = bn.
Từ đây ta có công thức truy hồi: bk = bk-1x0 + ak với k ≥ 1.
Giải trên máy: - Gán giá x0 vào biến nhớm M.
- Thực hiện dãy lặp: bk-1ak
Ví dụ 1: (Sở GD TP HCM, 1996) Tính khi x = 1,8165
Cách 1: Tính nhờ vào biến nhớ
Aán phím: 1 8165
Kết quả: 1.498465582
Cách 2: Tính nhờ vào biến nhớ
Aán phím: 18165
Kết quả: 1.498465582
Nhận xét: ( Phương pháp dùng sơ đồ Horner chỉ áp dụng hiệu quả đối với máy fx-220 và fx-500A, còn đối với máy fx-500 MS và fx-570 MS chỉ nên dùng phương pháp tính trực tiếp có sử dụng biểu thức chứa biến nhớ, riêng fx-570 MS có thể thế các giá trị của biến x nhanh bằng cách bấm máy hỏi X? khi đó khai báo các giá trị của biến x ấn phím là xong. Để có thể kiểm tra lại kết quả sau khi tính nên gán giá trị x0 vào một biến nhớ nào đó khác biến Ans để tiện kiểm tra và đổi các giá trị.
Ví dụ: Tính khi x = 1,8165; x = - 0,235678; x = 865,321
Khi đó ta chỉ cần gán giá trị x1 = - 0,235678 vào biến nhớ X: 235678
Dùng phím mũi tên lên một lần (
Chương 2: Đa thức
Chương 3: Giải phương trình và hệ phương trình
Chương 4: Liên phân số
Chương 5: Một số ứng dụng của hệ đếm
Chương 6: Dãy số truy hồi
Chương 7: Phương trình sai phân bậc hai và ứng dụng
Chương 8: Máy tính điện tử trợ giúp giải toán
Chương 9: Tìm nghiệm gần đúng của phương trình
Chương 10: Thống kê một biến
Chương 11: Bài Toán lãi kép
Chương 12: Đề tham khảo
Bài 1: (Thi khu vực, 2001) Tính:
a.
b.
c.
d.
e.Tìm x biết:
f. Tìm y biết:
Bài 2: (Thi khu vực, 2002) Tính giá trị của x từ các phương trình sau:
a.
b.
Bài 3: (Thi khu vực, 2001, đề dự bị)
a. Tìm 12% của biết:
b. Tính 2,5% của
c. Tính 7,5% của
d. Tìm x, nếu:
Thực hiện các phép tính:
e.
f.
g.
h.
i.
k.
Bài 4: (Thi khu vực 2003, đề dự bị) Tính:
a.
b.
Bài 5: (Thi khu vực 2001)
a. Hãy sắp xếp các số sau đây theo thứ tự tăng dần:
b. Tính giá trị của biểu thức sau:
c. Tính giá trị của biểu thức sau:
Ví dụ: Tính T =
Dùng máy tính trực tiếp cho kết quả là: 9,999999971 x 1026
Biến đổi: T
Dùng máy tính tính 999 999 999
Vậy
Như vậy thay vì kết qủa nhận được là một số nguyên thì thế trực tiếp vào máy tính ta nhận được kết quả là số dạng a.10n (sai số sau 10 chữ số của a).
( Trong các kỳ thi cấp tỉnh dạng bài này thường chiếm 40% - 60% số điểm, trong các kỳ thi cấp khu vực dạng này chiếm khoảng 20% - 40%.
( Trong dạng bài này thí sinh cần lưu ý: số thập phân vô hạn tuần hoàn (ví dụ: 0,(4); 0,1(24); 9,895862…; … thí sinh cần biết cách biến đổi các số này sang số thập phân đúng và làm việc với các số đúng đó.
II. Dạng 2: ĐA THỨC
Dạng 2.1. Tính giá trị của đa thức
Bài toán: Tính giá trị của đa thức P(x,y,…) khi x = x0, y = y0; …
Phương pháp 1: (Tính trực tiếp) Thế trực tiếp các giá trị của x, y vào đa thức để tính.
Phương pháp 2: (Sơ đồ Horner, đối với đa thức một biến)
Viết dưới dạng
Vậy Đặt b0 = a0; b1 = b0x0 + a1; b2 = b1x0 + a2; …; bn = bn-1x0 + an. Suy ra: P(x0) = bn.
Từ đây ta có công thức truy hồi: bk = bk-1x0 + ak với k ≥ 1.
Giải trên máy: - Gán giá x0 vào biến nhớm M.
- Thực hiện dãy lặp: bk-1ak
Ví dụ 1: (Sở GD TP HCM, 1996) Tính khi x = 1,8165
Cách 1: Tính nhờ vào biến nhớ
Aán phím: 1 8165
Kết quả: 1.498465582
Cách 2: Tính nhờ vào biến nhớ
Aán phím: 18165
Kết quả: 1.498465582
Nhận xét: ( Phương pháp dùng sơ đồ Horner chỉ áp dụng hiệu quả đối với máy fx-220 và fx-500A, còn đối với máy fx-500 MS và fx-570 MS chỉ nên dùng phương pháp tính trực tiếp có sử dụng biểu thức chứa biến nhớ, riêng fx-570 MS có thể thế các giá trị của biến x nhanh bằng cách bấm máy hỏi X? khi đó khai báo các giá trị của biến x ấn phím là xong. Để có thể kiểm tra lại kết quả sau khi tính nên gán giá trị x0 vào một biến nhớ nào đó khác biến Ans để tiện kiểm tra và đổi các giá trị.
Ví dụ: Tính khi x = 1,8165; x = - 0,235678; x = 865,321
Khi đó ta chỉ cần gán giá trị x1 = - 0,235678 vào biến nhớ X: 235678
Dùng phím mũi tên lên một lần (
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Anh Đức
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)