Chuyên đề bậc 2 chứa tham số-Cực hấp dẫn
Chia sẻ bởi Tạ Văn Sáng |
Ngày 13/10/2018 |
38
Chia sẻ tài liệu: Chuyên đề bậc 2 chứa tham số-Cực hấp dẫn thuộc Đại số 9
Nội dung tài liệu:
BÀI TOÁN VỀ PHƯƠNG TRÌNH BẬC HAI CHỨA THAM SỐ
Bài toán 1: Tìm điểu kiện của m để phương trình có nghiệm, có nghiệm kép, vô nghiệm, có 2 nghiệm phân biệt.
Phương pháp giải:
Bước 1: Xác định các hệ số a, b, c ( hoặc a, b, c, b`) (nếu chưa thành thạo).
Bước 2: Tính hoặc
Bước 3. Kiểm tra các điều kiện
+ Nếu <0 ( hoặc <0) thì phương trình vô nghiệm.
+ Nếu =0 ( hoặc = 0) thì phương trình có nghiệm kép
+ Nếu >0 ( hoặc > 0) thì phương trình có 2 nghiệm phân biệt.
+ Nếu ( hoặc ) thì phương trình có nghiệm.
+ Lưu ý:
- Trong một số bài toán tìm điều kiện để phương trình có nghiệm mà hệ số a chứa tham số ta phải xét trường hợp a = 0. Sau đó xét trường hợp và làm như các bước ở trên.
- Trong một số bài toán tìm điểu kiện của m để phương trình có nghiệm, có nghiệm kép, vô nghiệm, có 2 nghiệm phân biệt ma hệ số a chứa tham số ta phải tìm điều kiện để phương trình đó là phương trình bậc hai ( )
Ví dụ 1: Cho phương trình (m-1)x2 + 2.(m+2)x+m = 0 (1).
a, Tìm điều kiện của m để phương trình có nghiệm
b, TÌm điều kiện của m để phương trình có 2 nghiệm phân biệt.
Giải
a,
+ Khi m-1 = 0 hay m =1, phương trình (1) trở thành: 6x + 1 = 0.
Đó là phương trình bậc nhất và có nghiệm .
+ Khi hay . Ta có
Để phương trình có nghiệm thì , tức là:
Kết hợp 2 trường hợp ta được khi thì phương trình 1 có nghiệm.
b, Để phương trình (1) có 2 nghiệm phân biệt thì , tức là:
Vậy với và thì phương trình (1) có 2 nghiệm phân biệt.
Bài tập áp dụng
Bài 1: Tìm điều kiện của m để các phương trình sau có nghiệm
a, x2 - x - 2m = 0 b, 5x2 + 3x + m-1 = 0
c, mx2 - x - 5 =0 d, (m2 + 1)x2 - 2(m+3)x + 1 = 0
Bài 2: Tìm điều kiện của m để các phương trình sau có 2 nghiệm phân biệt
a, 3x2 - 2x + m =0 b, x2 + 2(m-1)x - 2m+5 = 0
Bài 3. Tìm điều kiện của m để phương trình vô nghiệm
a, ( m-1)x2 + 2x + 11 = 0 b, x2 + (m-1)x+m-2=0
Bài toán 2: Chứng minh rằng phương trình luôn có nghiệm, 2 nghiệm phân biệt với mọi m.
Phương pháp giải:
Bước 1: Tính hoặc
Bước 2:
+ Chứng minh thì phương trình luôn có nghiệm với
+ Chứng minh thì phương trình luôn có 2 nghiệm phân biệt với .
( Chú ý sử dụng hằng đẳng thức ta tách các biểu thức thành bình phương của một biểu thức cộng với một số thực dương; Các biểu thức sau luôn không âm: ; A2, ...)
Lưu ý: Ta có thể chứng minh phương trình có 2 nghiệm phân biệt với bằng cách chứng minh a.c < 0 ( a, c trái dấu).
Ví dụ 1: Cho phương trình x2 - (m+1)x +m =0 (1) ( x là ẩn số, m là tham số)
Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m
Giải
Ta có
Nhận thấy
Suy ra, phương trình (1) luôn có nghiệm với mọi m.
Ví dụ 2: Cho phương trình x2 - 2.(m-1)x + m-3 = 0 (1) ( x là ẩn số, m là tham số)
Chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt.
Giải
+ Ta có
Ta có m2 - 3m+ 4 =
Suy ra
Vậy phương trình (1) luôn có 2 nghiệm phân biệt.
Bài tập áp dụng
Bài 1: Chứng minh phương trình ẩn x sau luôn có nghiệm hoặc có 2 nghiệm phân biệt.
a, x2 - 2.( m+1)x + 2m+1 = 0 b, x2 - 3x + 1-m2 = 0
c, x2 + ( m+3)x + m+1 = 0
Bài toán 3:
Bài toán 1: Tìm điểu kiện của m để phương trình có nghiệm, có nghiệm kép, vô nghiệm, có 2 nghiệm phân biệt.
Phương pháp giải:
Bước 1: Xác định các hệ số a, b, c ( hoặc a, b, c, b`) (nếu chưa thành thạo).
Bước 2: Tính hoặc
Bước 3. Kiểm tra các điều kiện
+ Nếu <0 ( hoặc <0) thì phương trình vô nghiệm.
+ Nếu =0 ( hoặc = 0) thì phương trình có nghiệm kép
+ Nếu >0 ( hoặc > 0) thì phương trình có 2 nghiệm phân biệt.
+ Nếu ( hoặc ) thì phương trình có nghiệm.
+ Lưu ý:
- Trong một số bài toán tìm điều kiện để phương trình có nghiệm mà hệ số a chứa tham số ta phải xét trường hợp a = 0. Sau đó xét trường hợp và làm như các bước ở trên.
- Trong một số bài toán tìm điểu kiện của m để phương trình có nghiệm, có nghiệm kép, vô nghiệm, có 2 nghiệm phân biệt ma hệ số a chứa tham số ta phải tìm điều kiện để phương trình đó là phương trình bậc hai ( )
Ví dụ 1: Cho phương trình (m-1)x2 + 2.(m+2)x+m = 0 (1).
a, Tìm điều kiện của m để phương trình có nghiệm
b, TÌm điều kiện của m để phương trình có 2 nghiệm phân biệt.
Giải
a,
+ Khi m-1 = 0 hay m =1, phương trình (1) trở thành: 6x + 1 = 0.
Đó là phương trình bậc nhất và có nghiệm .
+ Khi hay . Ta có
Để phương trình có nghiệm thì , tức là:
Kết hợp 2 trường hợp ta được khi thì phương trình 1 có nghiệm.
b, Để phương trình (1) có 2 nghiệm phân biệt thì , tức là:
Vậy với và thì phương trình (1) có 2 nghiệm phân biệt.
Bài tập áp dụng
Bài 1: Tìm điều kiện của m để các phương trình sau có nghiệm
a, x2 - x - 2m = 0 b, 5x2 + 3x + m-1 = 0
c, mx2 - x - 5 =0 d, (m2 + 1)x2 - 2(m+3)x + 1 = 0
Bài 2: Tìm điều kiện của m để các phương trình sau có 2 nghiệm phân biệt
a, 3x2 - 2x + m =0 b, x2 + 2(m-1)x - 2m+5 = 0
Bài 3. Tìm điều kiện của m để phương trình vô nghiệm
a, ( m-1)x2 + 2x + 11 = 0 b, x2 + (m-1)x+m-2=0
Bài toán 2: Chứng minh rằng phương trình luôn có nghiệm, 2 nghiệm phân biệt với mọi m.
Phương pháp giải:
Bước 1: Tính hoặc
Bước 2:
+ Chứng minh thì phương trình luôn có nghiệm với
+ Chứng minh thì phương trình luôn có 2 nghiệm phân biệt với .
( Chú ý sử dụng hằng đẳng thức ta tách các biểu thức thành bình phương của một biểu thức cộng với một số thực dương; Các biểu thức sau luôn không âm: ; A2, ...)
Lưu ý: Ta có thể chứng minh phương trình có 2 nghiệm phân biệt với bằng cách chứng minh a.c < 0 ( a, c trái dấu).
Ví dụ 1: Cho phương trình x2 - (m+1)x +m =0 (1) ( x là ẩn số, m là tham số)
Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m
Giải
Ta có
Nhận thấy
Suy ra, phương trình (1) luôn có nghiệm với mọi m.
Ví dụ 2: Cho phương trình x2 - 2.(m-1)x + m-3 = 0 (1) ( x là ẩn số, m là tham số)
Chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt.
Giải
+ Ta có
Ta có m2 - 3m+ 4 =
Suy ra
Vậy phương trình (1) luôn có 2 nghiệm phân biệt.
Bài tập áp dụng
Bài 1: Chứng minh phương trình ẩn x sau luôn có nghiệm hoặc có 2 nghiệm phân biệt.
a, x2 - 2.( m+1)x + 2m+1 = 0 b, x2 - 3x + 1-m2 = 0
c, x2 + ( m+3)x + m+1 = 0
Bài toán 3:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Tạ Văn Sáng
Dung lượng: 388,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)