Chương IV. §6. Hệ thức Vi-ét và ứng dụng

Chia sẻ bởi Nguyễn Tuấn Anh | Ngày 05/05/2019 | 47

Chia sẻ tài liệu: Chương IV. §6. Hệ thức Vi-ét và ứng dụng thuộc Đại số 9

Nội dung tài liệu:

KÍNH CHÀO QUÝ THẦY CÔ GIÁO
Đến dự giờ với lớp 9D
Chúc các em 1 tiết học lí thú
kiểm tra bài cũ:
Cho phương trình bậc hai ax2 + bx+ c = 0 (a ≠ 0). Hãy viết công thức nghiệm tổng quát của phương trình trong trường hợp  > 0 ?
Khi  > 0: Phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm phân biệt
Với  = b2 – 4ac
Đáp án:
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TI?T 57:
ĐẠI SỐ 9
Khi phương trình ax2 + bx + c = 0 (a ≠ 0) có nghiệm:

Hãy tính a) x1 + x2
b) x1.x2
?
Đáp án:
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
Δ = .........
x1+ x2 =..........

x1. x2 =...........
Δ = .........
x1+ x2 =..........

x1. x2 =...........
Bài tập 25(Sgk/52): D?i v?i m?i phuong trỡnh sau, kớ hi?u x1 v� x2 l� hai nghi?m (n?u cú). Khụng gi?i phuong trỡnh, hóy di?n v�o nh?ng ch? tr?ng (.).
a, 2x2 - 17x + 1 = 0
(-17)2 – 4.2.1 = 281 > 0
c, 8x2 - x + 1 = 0
(-1)2 – 4.8.1= -31 < 0
Không có giá trị
Không có giá trị
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
*T.Quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x1 = 1, còn nghiệm kia là
Cho PT: 2x2 - 5x + 3 = 0
a, Xác định các hệ số a, b, c rồi tính a + b + c.
b, Chứng tỏ x1 = 1 là một nghiệm của phương trình.
c, Dùng định lí Vi-ét để tìm x2.
? 2 – SGK:
Ta có a =
a + b + c =
2
-5
3
2 + (-5) + 3
= 0
Thay x1= 1 vào VT của PT ta có:
VT = 2.12 - 5.1 + 3 = 0
Vậy x1= 1 là một nghiệm của PT.
Theo định lý Vi-ét thỡ:
Mà x1 = 1
a,
b,
c,
= VP
; b =
; c =
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
*T.Quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x1 = 1, còn nghiệm kia là
Cho PT: 3x2 + 7x + 4 = 0
a, Chỉ rõ các hệ số a, b, c rồi tính a - b + c.
b, Chứng tỏ x1 = -1 là một nghiệm của phương trình.
c, Tìm x2.
? 3 – SGK:
Ta có a = ; b = ; c =
a - b + c =
3
7
4
3 - 7 + 4
= 0
Thay x1= -1 vào VT của PT ta có:
VT = 3.(-1)2 + 7.(-1) + 4 = 0 = VP
Vậy x1= -1 là một nghiệm của PT.
Theo định lý Vi-ét thỡ:
Mà x1= -1
a,
b,
c,
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
*T.Quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x1 = 1, còn nghiệm kia là
*T.Quát 2: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x1 = -1, còn nghiệm kia là
? 4 – SGK: Tính nhẩm nghiệm của các phương trình:
a) -5x2 + 3x + 2 = 0
b) 2004x2 + 2005x +1 = 0
Có a + b + c = -5 + 3 + 2 = 0
Vậy x1 = 1;
Có a - b + c = 2004 - 2005 + 1 = 0
Vậy x1 = -1;
x2 =
x2 =
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
*T.Quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x1 = 1, còn nghiệm kia là
*T.Quát 2: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x1 = -1, còn nghiệm kia là
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
*T.Quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x1 = 1, còn nghiệm kia là
*T.Quát 2: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x1 = -1, còn nghiệm kia là
2. Tìm hai số biết tổng và tích của chúng:
Bài toán: Tìm hai số biết tổng của chúng bằng S và tích của chúng bằng P.
Gọi số thứ nhất là x thì số thứ hai là (S - x).
Tích hai số bằng P nên: x(S – x) = P
 x2 – Sx + P = 0 (1)
Nếu  = S2 – 4P ≥ 0 thì PT (1) có nghiệm. Các nghiệm này chính là các số cần tìm.
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
*T.Quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x1 = 1, còn nghiệm kia là
*T.Quát 2: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x1 = -1, còn nghiệm kia là
2. Tìm hai số biết tổng và tích của chúng:
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của PT: x2 – Sx + P = 0.
Điều kiện để có hai số đó là S2 – 4P ≥ 0
Ví dụ 1: Tìm hai số biết tổng của chúng bằng 27, tích của chúng bằng 180.
Giải: Hai số cần tìm là nghiệm của phương trình x2 – 27x + 180 = 0
x1 = 15 ; x2 = 12.
Vậy hai số cần tìm là 15 và 12.
 = (-27)2 - 4.1.180 = 9
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
*T.Quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x1 = 1, còn nghiệm kia là
*T.Quát 2: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x1 = -1, còn nghiệm kia là
2. Tìm hai số biết tổng và tích của chúng:
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của PT: x2 – Sx + P = 0.
Điều kiện để có hai số đó là S2 – 4P ≥ 0
? 5 – SGK: Tìm hai số biết tổng của chúng bằng 1, tích của chúng bằng 5.
Hai số cần tìm là nghiệm của PT: x2 – x + 5 = 0.
 = (-1)2 – 4.1.5 = - 19 < 0
Vậy không có hai số nào có tổng bằng 1, tích bằng 5.
HỆ THỨC VI-ÉT VÀ ỨNG DỤNG
TIẾT 57:
ĐẠI SỐ 9
Nếu x1, x2 là hai nghiệm của PT ax2 + bx + c = 0 (a ≠ 0) thì:
HỆ THỨC VI-ÉT:
* Định lí VI-ÉT:
*T.Quát 1: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a + b + c = 0 thì PT có một nghiệm x1 = 1, còn nghiệm kia là
*T.Quát 2: Nếu PT ax2 + bx + c = 0 (a ≠ 0) có: a - b + c = 0 thì PT có một nghiệm x1 = -1, còn nghiệm kia là
2. Tìm hai số biết tổng và tích của chúng:
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là hai nghiệm của PT: x2 – Sx + P = 0.
Điều kiện để có hai số đó là S2 – 4P ≥ 0
Ví dụ 2: Tính nhẩm nghiệm của PT x2 – 5x + 6 = 0.
Giải: Vì 2 + 3 = 5; 2.3 = 6
nên x1 = 2, x2 =3 là hai nghiệm của PT đã cho.
Hướng dẫn về nhà
- Học thuộc định lí Vi-ét và cách tìm hai số biết tổng và tích của chúng.
- Nắm vững cách nhẩm nghiệm trong các trường hợp đặc biệt: a + b + c = 0 và a – b + c = 0.
- Bài tập về nhà: 25, 26, 27, 28 trang 52; 53 – SGK.
Cảm ơn các thầy cô đã đến dự tiết học !
Chúc các em tiến bộ hơn trong học tập !
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Tuấn Anh
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)