Chương IV. §5. Công thức nghiệm thu gọn
Chia sẻ bởi Nguyễn Võ Thái Kì |
Ngày 05/05/2019 |
70
Chia sẻ tài liệu: Chương IV. §5. Công thức nghiệm thu gọn thuộc Đại số 9
Nội dung tài liệu:
GIÁO ÁN ĐIỆN TỬ
MÔN : ĐẠI 9, TIẾT 58
GV . Thực hiện: NGUYỄN VÕ THÁI KỲ
Tháng 03 năm 2009.
GIÁO ÁN ĐIỆN TỬ
MÔN : ĐẠI 9, TIẾT 58
GV . Thực hiện: NGUYỄN VÕ THÁI KỲ
Tháng 03 năm 2009.
Áp dụng công thức nghiệm giải các phương trình sau :
Kiểm tra bài cũ
Giải
a) Giải phương trình 5x2 + 4x – 1 = 0
(a = 5; b = 4 ; c = -1)
Ta có: Δ = 42 - 4.5.(-1)
= 16 + 20
= 36
Do Δ = 36 > 0 nên phương trình có hai nghiệm phân biệt:
a) 5x2 + 4x – 1 = 0 ;
Do Δ = 0 nên phương trình có nghiệm kép :
= 12 - 12
= 0
Qua phần kiểm tra bài cũ, ta đã giải hai phương trình :
a) 5x2 + 4x – 1 = 0 ;
Hệ số b của hai phương trình trên có điều gì đặc biệt ?
Còn cách giải nào nhanh hơn không ?
Δ’ < 0
Phương trình ax2 + bx + c = 0 (a ≠ 0) trong nhiều trường hợp ta đặt b = 2b’ thì
Δ = b2 – 4ac =
Kí hiệu : Δ’ = b’2 – ac
ta có : Δ = 4Δ’
§5. Công thức nghiệm thu gọn
1. Công thức nghiệm thu gọn.
Nếu ∆ > 0 thì ∆’ > 0 , phương trình có hai nghiệm phân biệt :
Dựa vào đẳng thức Δ = 4Δ’
Hãy nhận xét về dấu của Δ và ∆’ ?
=
=
=
=
Hãy điền vào chổ …… trong bảng phụ theo mẫu sau :
Nếu ∆ = 0 thì , phương trình
Nếu ∆ < 0 thì , phương trình
vô nghiệm
có nghiệm kép
4(b’2 – ac)
(2b’)2 – 4ac =
4b’2 – 4ac =
Δ’ = 0
ta kí hiệu : Δ’
*Δ’ < 0 , phương trình vô nghiệm
§5. Công thức nghiệm thu gọn
1. Công thức nghiệm thu gọn.
x2 =
Nếu ∆ > 0 thì
x1 = x2 =
x1 =
Hãy điền vào chổ …… trong bảng phụ theo mẫu sau :
Nếu ∆ = 0 thì
Nếu ∆ < 0 thì
*Δ’ = 0 , phương trình có nghiệm kép
*∆’ > 0 , phương trình có hai nghiệm phân biệt :
Phương trình ax2 + bx + c = 0 (a ≠ 0) , b = 2b’ và Δ’ = b’2 – ac
§5. Công thức nghiệm thu gọn
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình
có hai nghiệm phân biệt :
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Phương trình ax2 + bx + c = 0 (a ≠0)
và b = 2b’, Δ’ = b’2 – ac :
Em hãy nêu lên những điểm khác nhau của công thức nghiệm phương trình bậc hai và công thức nghiệm thu gọn của phương trình bậc hai
§5. Công thức nghiệm thu gọn
2. Áp dụng.
Giải phương trình 5x2 + 4x – 1 = 0 bằng cách điền vào chỗ . . . trong các chỗ sau :
a = . . .
c = . . . .
b’ = . . .
5
2
-1
;
;
Δ’ = . . .
b’2 - ac =22 – 5.(-1)= 4 + 5 = 9
Nghiệm của phương trình :
x1 = . . . . . . . . . . .
x2 = . . . . . . . . .
Ta có :
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
a) 3x2 + 8x + 4 = 0
Ví dụ : Xác định a , b’ , c rồi dùng công thức nghiệm thu gọn giải các phương trình sau:
So sánh với phần kiểm tra bài cũ đối với phương trình 5x2 + 4x – 1 = 0 nên dùng công thức nghiệm nào để giải ?
Học sinh giải độc lập bài toán trên
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1.Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ :Giải phương trình sau:
Giải
a) Giải phương trình :
3x2 + 8x + 4 = 0
(a = 3; b’ = 4 ; c = 4)
Ta có: Δ’ = 42 - 3.4
= 16 - 12
= 4
Do Δ’ = 4 > 0 nên phương trình có hai nghiệm phân biệt:
a) 3x2 + 8x + 4 = 0 ;
Ví dụ : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ :Giải phương trình sau:
Do Δ’ = 0 nên phương trình có nghiệm kép:
b) Giải phương trình
Ta có:
= 18 - 18
= 0
Giải
Ví dụ : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ :Giải phương trình sau:
Giải
c) Giải phương trình
Ta có:
= 12 - 14
= -2
Do Δ’ = -2 < 0 nên phương trình vô nghiệm.
Ví dụ : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
Củng cố và luyện tập
A. Những kiến thức cần nắm trong bài học:
- Công thức nghiệm thu gọn.
Xác định kiến thức trọng tâm của bài học ?
Các bước giải phương trình bậc hai bằng công thức nghiệm thu gọn.
+ Xác định các hệ số a, b’ và c
+ Tính ∆’ và xác định ∆’ > 0 hoặc ∆’ = 0 hoặc ∆’ < 0
+ Tính nghiệm của phương trình (nếu có)
Có thể dùng công thức nghiệm thu gọn để giải phương trình x2 + 3x – 4 = 0 được không ?
Củng cố và luyện tập
Cách xác định hệ số b’ trong các trường hợp sau, trường hợp nào đúng , trường hợp nào sai :
a.
b.
c.
d.
e.
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = 3
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = -3
Phương trình x2 – x - 2 = 0 có hệ số b’ = -1
Đúng
Đúng
Đúng
Sai
Củng cố và luyện tập
B. Bài tập 1
Sai
2
Giải phương trình x2 – 2x - 6 = 0 hai bạn Minh và Dũng làm như sau:
Củng cố và luyện tập
B. Bài tập 2
Phương trình x2 - 2x - 6 = 0
(a = 1; b = -2 ; c = -6)
Δ = (-2)2 – 4.1.(-6) = 4 + 24 = 28
Do Δ = 28 > 0 nên phương trình có hai nghiệm phân biệt:
bạn Minh giải:
bạn Dũng giải:
Phương trình x2 - 2x - 6 = 0
(a = 1; b’ = -1 ; c = -6)
Δ’ = (-1)2 –1.(-6) = 1 + 6 = 7
Do Δ’ = 7 > 0 nên phương trình có hai nghiệm phân biệt:
bạn Bình bảo rằng : bạn Minh giải sai, bạn Dũng giải đúng. Còn bạn Thu nói cả hai bạn đều làm đúng.
Theo em : ai đúng, ai sai. Em chọn cách giải của bạn nào ? Vì sao?
3
Trong các phương trình sau, phương trình nào nên dùng công thức nghiệm thu gọn để giải ?
Củng cố và luyện tập
B. Bài tập 3
a.
b.
c.
d.
Phương trình 2x2 – 3x - 5 = 0
Phương trình x2 – x - 2 = 0
4
Hướng dẫn về nhà
1. Học thuộc :
2. Vận dụng công thức nghiệm và công thức nghiệm thu gọn vào giải bài tập :
Bài 17, 18, 20, 21 SGK để tiết sau luyện tập.
- Công thức nghiệm thu gọn.
- Các bước giải phương trình bằng công thức nghiệm thu gọn.
5
Chào tạm biệt các em
“Ngọc không giũa không thành đồ dùng;
người không học không biết nghĩa lý”
Tam Tự Kinh
“Mềm mại hiền lành là dấu hiệu của người văn minh.
Nóng nảy cục cằn là tàn dư của sự man dại”
Waterstone
Bác hồ với thiếu nhi
MÔN : ĐẠI 9, TIẾT 58
GV . Thực hiện: NGUYỄN VÕ THÁI KỲ
Tháng 03 năm 2009.
GIÁO ÁN ĐIỆN TỬ
MÔN : ĐẠI 9, TIẾT 58
GV . Thực hiện: NGUYỄN VÕ THÁI KỲ
Tháng 03 năm 2009.
Áp dụng công thức nghiệm giải các phương trình sau :
Kiểm tra bài cũ
Giải
a) Giải phương trình 5x2 + 4x – 1 = 0
(a = 5; b = 4 ; c = -1)
Ta có: Δ = 42 - 4.5.(-1)
= 16 + 20
= 36
Do Δ = 36 > 0 nên phương trình có hai nghiệm phân biệt:
a) 5x2 + 4x – 1 = 0 ;
Do Δ = 0 nên phương trình có nghiệm kép :
= 12 - 12
= 0
Qua phần kiểm tra bài cũ, ta đã giải hai phương trình :
a) 5x2 + 4x – 1 = 0 ;
Hệ số b của hai phương trình trên có điều gì đặc biệt ?
Còn cách giải nào nhanh hơn không ?
Δ’ < 0
Phương trình ax2 + bx + c = 0 (a ≠ 0) trong nhiều trường hợp ta đặt b = 2b’ thì
Δ = b2 – 4ac =
Kí hiệu : Δ’ = b’2 – ac
ta có : Δ = 4Δ’
§5. Công thức nghiệm thu gọn
1. Công thức nghiệm thu gọn.
Nếu ∆ > 0 thì ∆’ > 0 , phương trình có hai nghiệm phân biệt :
Dựa vào đẳng thức Δ = 4Δ’
Hãy nhận xét về dấu của Δ và ∆’ ?
=
=
=
=
Hãy điền vào chổ …… trong bảng phụ theo mẫu sau :
Nếu ∆ = 0 thì , phương trình
Nếu ∆ < 0 thì , phương trình
vô nghiệm
có nghiệm kép
4(b’2 – ac)
(2b’)2 – 4ac =
4b’2 – 4ac =
Δ’ = 0
ta kí hiệu : Δ’
*Δ’ < 0 , phương trình vô nghiệm
§5. Công thức nghiệm thu gọn
1. Công thức nghiệm thu gọn.
x2 =
Nếu ∆ > 0 thì
x1 = x2 =
x1 =
Hãy điền vào chổ …… trong bảng phụ theo mẫu sau :
Nếu ∆ = 0 thì
Nếu ∆ < 0 thì
*Δ’ = 0 , phương trình có nghiệm kép
*∆’ > 0 , phương trình có hai nghiệm phân biệt :
Phương trình ax2 + bx + c = 0 (a ≠ 0) , b = 2b’ và Δ’ = b’2 – ac
§5. Công thức nghiệm thu gọn
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình
có hai nghiệm phân biệt :
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Phương trình ax2 + bx + c = 0 (a ≠0)
và b = 2b’, Δ’ = b’2 – ac :
Em hãy nêu lên những điểm khác nhau của công thức nghiệm phương trình bậc hai và công thức nghiệm thu gọn của phương trình bậc hai
§5. Công thức nghiệm thu gọn
2. Áp dụng.
Giải phương trình 5x2 + 4x – 1 = 0 bằng cách điền vào chỗ . . . trong các chỗ sau :
a = . . .
c = . . . .
b’ = . . .
5
2
-1
;
;
Δ’ = . . .
b’2 - ac =22 – 5.(-1)= 4 + 5 = 9
Nghiệm của phương trình :
x1 = . . . . . . . . . . .
x2 = . . . . . . . . .
Ta có :
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
a) 3x2 + 8x + 4 = 0
Ví dụ : Xác định a , b’ , c rồi dùng công thức nghiệm thu gọn giải các phương trình sau:
So sánh với phần kiểm tra bài cũ đối với phương trình 5x2 + 4x – 1 = 0 nên dùng công thức nghiệm nào để giải ?
Học sinh giải độc lập bài toán trên
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1.Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ :Giải phương trình sau:
Giải
a) Giải phương trình :
3x2 + 8x + 4 = 0
(a = 3; b’ = 4 ; c = 4)
Ta có: Δ’ = 42 - 3.4
= 16 - 12
= 4
Do Δ’ = 4 > 0 nên phương trình có hai nghiệm phân biệt:
a) 3x2 + 8x + 4 = 0 ;
Ví dụ : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ :Giải phương trình sau:
Do Δ’ = 0 nên phương trình có nghiệm kép:
b) Giải phương trình
Ta có:
= 18 - 18
= 0
Giải
Ví dụ : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt
Nếu ∆’ = 0 thì phương trình có nghiệm kép :
Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ :Giải phương trình sau:
Giải
c) Giải phương trình
Ta có:
= 12 - 14
= -2
Do Δ’ = -2 < 0 nên phương trình vô nghiệm.
Ví dụ : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
Củng cố và luyện tập
A. Những kiến thức cần nắm trong bài học:
- Công thức nghiệm thu gọn.
Xác định kiến thức trọng tâm của bài học ?
Các bước giải phương trình bậc hai bằng công thức nghiệm thu gọn.
+ Xác định các hệ số a, b’ và c
+ Tính ∆’ và xác định ∆’ > 0 hoặc ∆’ = 0 hoặc ∆’ < 0
+ Tính nghiệm của phương trình (nếu có)
Có thể dùng công thức nghiệm thu gọn để giải phương trình x2 + 3x – 4 = 0 được không ?
Củng cố và luyện tập
Cách xác định hệ số b’ trong các trường hợp sau, trường hợp nào đúng , trường hợp nào sai :
a.
b.
c.
d.
e.
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = 3
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = -3
Phương trình x2 – x - 2 = 0 có hệ số b’ = -1
Đúng
Đúng
Đúng
Sai
Củng cố và luyện tập
B. Bài tập 1
Sai
2
Giải phương trình x2 – 2x - 6 = 0 hai bạn Minh và Dũng làm như sau:
Củng cố và luyện tập
B. Bài tập 2
Phương trình x2 - 2x - 6 = 0
(a = 1; b = -2 ; c = -6)
Δ = (-2)2 – 4.1.(-6) = 4 + 24 = 28
Do Δ = 28 > 0 nên phương trình có hai nghiệm phân biệt:
bạn Minh giải:
bạn Dũng giải:
Phương trình x2 - 2x - 6 = 0
(a = 1; b’ = -1 ; c = -6)
Δ’ = (-1)2 –1.(-6) = 1 + 6 = 7
Do Δ’ = 7 > 0 nên phương trình có hai nghiệm phân biệt:
bạn Bình bảo rằng : bạn Minh giải sai, bạn Dũng giải đúng. Còn bạn Thu nói cả hai bạn đều làm đúng.
Theo em : ai đúng, ai sai. Em chọn cách giải của bạn nào ? Vì sao?
3
Trong các phương trình sau, phương trình nào nên dùng công thức nghiệm thu gọn để giải ?
Củng cố và luyện tập
B. Bài tập 3
a.
b.
c.
d.
Phương trình 2x2 – 3x - 5 = 0
Phương trình x2 – x - 2 = 0
4
Hướng dẫn về nhà
1. Học thuộc :
2. Vận dụng công thức nghiệm và công thức nghiệm thu gọn vào giải bài tập :
Bài 17, 18, 20, 21 SGK để tiết sau luyện tập.
- Công thức nghiệm thu gọn.
- Các bước giải phương trình bằng công thức nghiệm thu gọn.
5
Chào tạm biệt các em
“Ngọc không giũa không thành đồ dùng;
người không học không biết nghĩa lý”
Tam Tự Kinh
“Mềm mại hiền lành là dấu hiệu của người văn minh.
Nóng nảy cục cằn là tàn dư của sự man dại”
Waterstone
Bác hồ với thiếu nhi
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Võ Thái Kì
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)