Chương IV. §5. Công thức nghiệm thu gọn

Chia sẻ bởi Nguyễn Thu Hương | Ngày 05/05/2019 | 57

Chia sẻ tài liệu: Chương IV. §5. Công thức nghiệm thu gọn thuộc Đại số 9

Nội dung tài liệu:

Giáo viên thực hiện: Nguyễn Thu Hương
Trường THCS Hòa Long – TP Bắc Ninh
Chào mừng các thầy cô giáo về dự giờ TOáN LớP 9A

Áp dụng công thức nghiệm giải các phương trình sau :
Giải
a) Giải phương trình 5x2 + 4x – 1 = 0
(a = 5; b = 4 ; c = -1)
Ta có: Δ = 42 - 4.5.(-1)
= 16 + 20
= 36
Do Δ = 36 > 0 nên phương trình có hai nghiệm phân biệt:
a) 5x2 + 4x – 1 = 0 ;
Do Δ = 0 nên phương trình có nghiệm kép :
= 12 - 12
= 0
Δ’ < 0
Phương trình ax2 + bx + c = 0 (a≠0)
trong nhiều trường hợp ta đặt b = 2b’ (b’ = b/2)
thì Δ = b2 – 4ac =

Kí hiệu : Δ’ = b’2 – ac
ta có : Δ = 4Δ’
Tiết 55 :Đ5. công thức nghiệm thu gọn
1. Công thức nghiệm thu gọn.
Nếu ∆ > 0 thì ∆’ > 0 , phương trình có hai nghiệm phân biệt :
Dựa vào đẳng thức Δ = 4Δ’
Hãy nhận xét về dấu của Δ và ∆’ ?
=
=
=
=
Hãy điền vào chỗ …… trong phiếu học tập theo mẫu sau :
Nếu ∆ = 0 thì , phương trình
Nếu ∆ < 0 thì , phương trình
vô nghiệm
có nghiệm kép
=4(b’2 – ac)
(2b’)2 – 4ac
= 4b’2 – 4ac
Δ’ = 0
Tiết 55 :Đ5. công thức nghiệm thu gọn
2. Áp dụng.
Ví dụ 1:
Giải phương trình 5x2 + 4x – 1 = 0 bằng cách điền vào chỗ . . . trong các chỗ sau :
a = . . .
c = . . . .
b’ = . . .
5
2
-1
;
;
Δ’ = . . .
b’2 - ac =22 – 5.(-1)= 4 + 5 = 9
Nghiệm của phương trình :
x1 =
x2 =
Ta có :
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt:
 Nếu ∆’ = 0 thì phương trình có nghiệm kép :
 Nếu ∆’ < 0 thì phương trình vô nghiệm.
x1 = x2 =
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ 2 : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
b`
a
-
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
 Nếu ∆’ = 0 thì phương trình có nghiệm kép :
 Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ 2:Giải phương trình sau:
Do Δ’ > 0 nên phương trình có 2 nghiệm phân biệt :
a) Giải phương trình
Ta có:
= 16 - 12
= 4
Giải
Ví dụ 2 : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
 Nếu ∆’ = 0 thì phương trình có nghiệm kép :
 Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ 2:Giải phương trình sau:
Do Δ’ = 0 nên phương trình có nghiệm kép:
b) Giải phương trình
Ta có:
= 18 - 18
= 0
Giải
Ví dụ 2 : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
§5. Công thức nghiệm thu gọn
2. Áp dụng.
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt
 Nếu ∆’ = 0 thì phương trình có nghiệm kép :
 Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ 2:Giải phương trình sau:
Giải
c) Giải phương trình
Ta có:
= 12 - 14
= -2
Do Δ’ = -2 < 0 nên phương trình vô nghiệm.
Ví dụ 2 : Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
Củng cố và luyện tập
A. Những kiến thức cần nắm trong bài học:
- Công thức nghiệm thu gọn.
Xác định kiến thức trọng tâm của bài học ?
Các bước giải phương trình bậc hai bằng công thức nghiệm thu gọn.
+ Xác định các hệ số a, b’ và c
+ Tính ∆’ và xác định ∆’ > 0 hoặc ∆’ = 0 hoặc ∆’ < 0
+ Tính nghiệm của phương trình (nếu có)
Cách xác định hệ số b’ trong các trường hợp sau, trường hợp nào đúng:
a.
b.
c.
d.
e.
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = 3
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = -3
Phương trình x2 – x - 2 = 0 có hệ số b’ = -1
Đúng
Đúng
Đúng
Sai
Sai
Củng cố và luyện tập
B. Bài tập 1
Giải phương trình x2 – 2x - 6 = 0 hai bạn Hoa và Minh làm như sau:
Củng cố và luyện tập
B. Bài tập 2
Phương trình x2 - 2x - 6 = 0
(a = 1; b = -2 ; c = -6)
Δ = (-2)2 – 4.1.(-6) = 4 + 24 = 28
Do Δ = 28 > 0 nên phương trình có hai nghiệm phân biệt:
bạn Minh giải:
bạn Hoa giải:
Phương trình x2 - 2x - 6 = 0
(a = 1; b’ = -1 ; c = -6)
Δ’ = (-1)2 –1.(-6) = 1 + 6 = 7
Do Δ’ = 7 > 0 nên phương trình có hai nghiệm phân biệt:
bạn Giang bảo rằng : bạn Minh giải sai, bạn Hoa giải đúng. Còn bạn An nói cả hai bạn đều làm đúng.
Theo em : ai đúng, ai sai. Em chọn cách giải của bạn nào ? Vì sao?
Trong các phương trình sau, phương trình nào nên dùng công thức nghiệm thu gọn để giải ?
Củng cố và luyện tập
B. Bài tập 3
a.
b.
c.
d.
Phương trình 2x2 – 3x - 5 = 0
Phương trình x2 – x - 2 = 0
Phương trình x2 + 2x - 6 = 0
ở phần kiểm tra bài cũ, ta đã giải hai phương trình
a) 5x2 + 4x - 1 = 0 ;
Để việc tính và giải hai phương trình trên thuận tiện hơn ta nên dùng công thức nghiệm hay công thức nghiệm thu gọn ?
Có thể dùng công thức nghiệm thu gọn để giải
phương trình x2 + 3x – 4 = 0 được không ?
Hướng dẫn về nhà
1. Học thuộc :
2. Vận dụng công thức nghiệm và công thức nghiệm thu gọn vào giải bài tập :
Bài 17, 18, 20, 21 SGK để tiết sau luyện tập.
- Công thức nghiệm thu gọn.
- Các bước giải phương trình bằng công thức nghiệm thu gọn.
Xin chân thành cảm ơn các thầy cô giáo
cùng toàn thể các em học sinh!
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thu Hương
Dung lượng: | Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)