Chương IV. §5. Công thức nghiệm thu gọn

Chia sẻ bởi Đỗ Thị Phượng | Ngày 05/05/2019 | 41

Chia sẻ tài liệu: Chương IV. §5. Công thức nghiệm thu gọn thuộc Đại số 9

Nội dung tài liệu:

Đại số 9
Tiết 55:
Công thức nghiệm thu gọn
Kiểm tra bài cũ :
2. Viết bảng tóm tắt công thức nghiệm tổng quát của pt bậc hai một ẩn:
ax2 + bx + c = 0 ( với a khác 0) ?
Em hãy nhắc lại một số cách giải phương trình bậc hai một ẩn đã học ?
? Trong các cách nêu đó, cách nào áp dụng giải được cho tất cả mọi phương trình bậc 2 mà em thấy dễ áp dụng nhất .
Trong trường hợp hệ số b là số chẵn ta còn
có công thức nghiệm ngắn gọn hơn, giải ra
nghiệm nhanh hơn .
Đó là : công thức nghiệm thu gọn .
Δ’ < 0
Phương trình ax2 + bx + c = 0 (a≠0) trong nhiều trường hợp ta đặt b = 2b’ (b’ = b:2) thì
Δ = b2 – 4ac =
Kí hiệu : Δ’ = b’2 – ac Ta có : Δ = 4Δ’
§5. Công thức nghiệm thu gọn
Tiết 55:
1. Công thức nghiệm thu gọn.
Nếu ∆ > 0 thì ∆’ > 0 , phương trình có hai nghiệm phân biệt :
Dựa vào đẳng thức Δ = 4Δ’
Hãy nhận xét về dấu của Δ và ∆’ ?
=
=
=
=
Hãy điền vào chổ …… trong phiếu học tập theo mẫu sau :
Nếu ∆ = 0 thì , phương trình
Nếu ∆ < 0 thì , phương trình
vô nghiệm
có nghiệm kép
4(b’2 – ac)
(2b’)2 – 4ac =
4b’2 – 4ac =
Δ’ = 0
Qua kết quả suy luận trên , em hãy tóm tắt lại công thức nghiệm thu gọn?
* Công thức nghiệm thu gọn : SGK T 48
§5. Công thức nghiệm thu gọn
Tiết 55:
2. Áp dụng.
Ví dụ 1:
Giải phương trình 5x2 + 4x – 1 = 0 bằng cách điền vào chỗ . . . trong các chỗ sau :
a = . . .
c = . . . .
b’ = . . .
5
2
-1
;
;
Δ’ = . . .
b’2 - ac =22 – 5.(-1)= 4 + 5 = 9
Nghiệm của phương trình :
x1 =
x2 =
Ta có :
1. Công thức nghiệm thu gọn.
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt :
 Nếu ∆’ = 0 thì phương trình có nghiệm kép :
 Nếu ∆’ < 0 thì phương trình vô nghiệm.
;
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, Δ’ = b’2 – ac :
Ví dụ 2 :
Giải các phương trình sau:
a) 3x2 + 8x + 4 = 0
Các bước giải phương trình bằng công thức nghiệm thu gọn:
1. Xác định các hệ số a, b’ và c
2. Tính ∆’ và xác định ∆’ > 0 hoặc ∆’ = 0 hoặc ∆’ < 0 rồi suy ra số nghiệm của phương trình
3. Tính nghiệm của phương trình (nếu có)
§5. Công thức nghiệm thu gọn
Tiết 55:
2. Áp dụng.
Ví dụ 2: Giải các phương trình sau:
Giải
a) Giải phương trình :
3x2 + 8x + 4 = 0
(a = 3; b’ = 4 ; c = 4)
Ta có: Δ’ = 42 - 3.4
= 16 - 12
= 4
Do Δ’ = 4 > 0 nên phương trình có hai nghiệm phân biệt:
a) 3x2 + 8x + 4 = 0 ;
Do Δ’ = 0 nên phương trình có nghiệm kép:
b) Giải phương trình
Ta có:
= 18 - 18
= 0
;
c) Giải phương trình
Ta có:
= 12 - 14
= -2
Do Δ’ = -2 < 0 nên phương trình vô nghiệm.
Trong bài tập khi nào ta nên dùng công thức nghiệm thu gọn ?
Chú ý : Nếu hệ số b là số chẵn, hay bội chẵn
của một căn, một biểu thức ta nên dùng công
thức nghiệm thu gọn để giải phương trình bậc 2.

Nhưng không phải cứ giải phương trình bậc hai là ta dùng công thức nghiệm hoặc công thức nghiệm thu gọn đâu nhé !!!
Nên giải bằng cách nào ???
Có thể dùng công thức nghiệm thu gọn
để giải phương trình c không?
(Đưa về dạng pt tích)
(Đưa về dạng (...)2= số)
(Dùng CT nghiệm tổng quát)
(Dùng CT nghiệm thu gọn)
Củng cố và luyện tập
A. Những kiến thức cần nắm trong bài học:
- Công thức nghiệm thu gọn.
Xác định kiến thức trọng tâm của bài học ?
Các bước giải phương trình bậc hai bằng công thức nghiệm thu gọn.
+ Xác định các hệ số a, b’ và c
+ Tính ∆’ và xác định ∆’ > 0 hoặc ∆’ = 0 hoặc ∆’ < 0
+ Tính nghiệm của phương trình (nếu có)
Cách xác định hệ số b’ trong các trường hợp sau, trường hợp nào đúng:
a.
b.
c.
d.
e.
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = 3
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = -3
Phương trình x2 – x - 2 = 0 có hệ số b’ = -1
Đúng
Đúng
Đúng
Sai
Sai
Củng cố và luyện tập
B. Bài tập
Bài tập 1:
Giải phương trình x2 – 2x - 6 = 0 hai bạn Minh và Dũng làm như sau:
Củng cố và luyện tập
B. Bài tập
Bài tập 2:
Phương trình x2 - 2x - 6 = 0
(a = 1; b = -2 ; c = -6)
Δ = (-2)2 – 4.1.(-6) = 4 + 24 = 28
Do Δ = 28 > 0 nên phương trình có hai nghiệm phân biệt:
Bạn Minh Giải:
Bạn Dũng Giải:
Phương trình x2 - 2x - 6 = 0
(a = 1; b’ = -1 ; c = -6)
Δ’ = (-1)2 –1.(-6) = 1 + 6 = 7
Do Δ’ = 7 > 0 nên phương trình có hai nghiệm phân biệt:
bạn Bình bảo rằng : bạn Minh giải sai, bạn Dũng giải đúng. Còn bạn Thu nói cả hai bạn đều làm đúng.
Theo em : ai đúng, ai sai. Em chọn cách giải của bạn nào ? Vì sao?
Trong các phương trình sau, phương trình nào nên dùng công thức nghiệm thu gọn để giải ?
Củng cố và luyện tập
B. Bài tập
Bài tập 3:
a.
b.
c.
d.
Phương trình 2x2 – 3x - 5 = 0
Phương trình x2 – x - 2 = 0
Đúng
Sai
Sai
Sai
Hướng dẫn về nhà
1. Học thuộc :
2. Vận dụng công thức nghiệm và công thức nghiệm thu gọn vào giải bài tập :
Bài 17, 18, 20, 21 SGK để tiết sau luyện tập.
- Công thức nghiệm thu gọn.
- Các bước giải phương trình bằng công thức nghiệm thu gọn.
So với cách dùng công thức nghiệm để giải phương trình bậc 2 ta đã làm đầu giờ học , cách này có ưu điểm gì hơn không ? Em hãy quan sát lại lời giải :
công thức nghiệm thu gọn
1) Công thức nghiệm thu gọn
Phương trình ax2 + bx + c = 0. Nếu hệ số b chẵn đặt b = 2b`
* Nếu ? > 0 ? . > 0 thì phương trình có hai nghiệm phân biệt:
?`
-2b`
?`
* Nếu ? = 0 ? . = 0 thì phương trình có nghiệm kép

? `
-2b`
* Nếu ? < 0 ? . < 0 thì phương trình vô nghiệm.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Đỗ Thị Phượng
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)