Chương IV. §5. Công thức nghiệm thu gọn

Chia sẻ bởi Lê Thị Trinh | Ngày 05/05/2019 | 46

Chia sẻ tài liệu: Chương IV. §5. Công thức nghiệm thu gọn thuộc Đại số 9

Nội dung tài liệu:

Năm học 2011 - 2012
nhiệt liệt chào mừng
QUí thầy cô giáo
Giỏo viờn: B�I TH? L? TH?Y ? Tru?ng THCS NGUY?N VAN TR?I
PHÒNG GD-ĐT PHÚ NINH
BÀI CŨ:
HS1: Viết bảng tổng quát công thức nghiệm phương trình bậc hai một ẩn

ĐẠI SỐ 9
TIẾT 55
BÀI 5: CÔNG THỨC NGHIỆM THU GỌN
Nếu ∆’ > 0 hay ∆ . . . . .  ∆ = . . . ∆’
Nếu ∆’ = 0 hay ∆ . . . Phương trình . . . . . . . . . . . . . :
Nếu ∆’ < 0 hay ∆ . . . . . Phương trình . . . . . . . . . . . .
?
Phương trình có . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Điền vào chỗ (…) để được công thức đúng?
TIẾT 55: CÔNG THỨC NGHIỆM THU GỌN
hai nghiệm phân biệt
>0
2
– b’
∆’
– b

2a
– 2b’
– b’
∆’
2 ∆’
2a
= 0
có nghiệm kép
2b’
– b’
a
< 0
vô nghiệm
1/ Công thức nghiệm thu gọn:
Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt:
Nếu ∆’ = 0 thì phương trình có nghiệm kép:
Nếu ∆’ < 0 thì phương trình vô nghiệm.
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0)
và b = 2b’, ∆’ = b’2 – ac.
-
TIẾT 55: CÔNG THỨC NGHIỆM THU GỌN
TIẾT 55 §5. Công thức nghiệm thu gọn
Giải phương trình 5x2 + 4x – 1 = 0 bằng cách điền vào chỗ . . . trong các chỗ sau :
c = . . . .
a = . . .
b’ = . . .
5
2
-1
;
;
Phương trình có……………………
x1 =
x2 =
Ta có :
b`2 - ac = 22 - 5.(-1)= 4 + 5 = 9
2. ¸p dông.
Các bước giải phương trình bằng công thức nghiệm thu gọn:
1. Xác định các hệ số a, b’ và c
2. Tính ∆’ và xác định ∆’ > 0 hoặc ∆’ = 0 hoặc ∆’ < 0 rồi suy ra số nghiệm của phương trình
3. Tính nghiệm của phương trình (nếu có)
? Để giải pt bậc hai theo công thức nghiệm thu gọn ta làm như thế nào?
Hai nghiệm phân biệt
>
 So sánh hai cách giải của phương trình
Ở bài tập kiểm tra bài cũ
Dùng CT nghiệm (tổng quát)
Ở ?2 Dùng CT nghiệm thu gọn
Phương trình có hai nghiệm phân biệt:
Ở hai cách giải số nghiệm của chúng có khác nhau không ?
Dù tính ∆ hay ∆’ thì số nghiệm của phương trình vẫn không thay đổi.
Phương trình có hai nghiệm phân biệt:

Chú ý :N?u h? s? b=2b` nờn dựng cụng th?c nghi?m
thu g?n d? gi?i phuong trỡnh b?c 2.

?3: Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải các phương trình:
Cách xác định hệ số b’ trong các trường hợp sau, trường hợp nào đúng:
a.
b.
c.
d.
e.
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = 3
Phương trình 2x2 – 6x + 5 = 0 có hệ số b’ = -3
Phương trình x2 – x - 2 = 0 có hệ số b’ = -1
Đúng
Đúng
Đúng
Sai
Sai
Củng cố và luyện tập
Bài tập 1:
Giải phương trình x2 – 2x - 6 = 0 hai bạn An và Khánh làm như sau:
Củng cố và luyện tập
Bài tập 2:
Phương trình x2 - 2x - 6 = 0
(a = 1; b = -2 ; c = -6)
Δ = (-2)2 – 4.1.(-6) = 4 + 24 = 28 >0
Do Δ >0 nên phương trình có hai nghiệm phân biệt:
bạn An giải:
bạn Khánh giải:
Phương trình x2 - 2x - 6 = 0
(a = 1; b’ = -1 ; c = -6)
Δ’ = (-1)2 –1.(-6) = 1 + 6 = 7 >O
Do Δ’ > 0 nên phương trình có hai nghiệm phân biệt:
bạn Đoàn bảo rằng : bạn An giải sai, bạn Khánh giải đúng. Còn bạn Kết nói cả hai bạn đều làm đúng.
Theo em : ai đúng, ai sai. Em chọn cách giải của bạn nào ? Vì sao?
Trong các phương trình sau, phương trình nào nên dùng công thức nghiệm thu gọn để giải ?
Củng cố và luyện tập
Bài tập 3:
a.
b.
c.
d.
Phương trình 2x2 – 3x - 5 = 0
Phương trình x2 – 2x - 2 = 0
HƯỚNG DẪN VỀ NHÀ
- Làm bài tập 17, 18, 20, 21 SGK tr 49.
- Tiết sau luyện tập.
- Học thuộc công thức nghiệm thu gọn, các bước giải phương trình bậc hai bằng công thức nghiệm thu gọn.
TIẾT 55: CÔNG THỨC NGHIỆM THU GỌN
Các bước giải PT
bậc hai theo CT
nghiệm thu gọn
Xác định các
hệ số a, b’, c
Bước 1
Tính ’ = b’2 - ac
Bước 2
Bước 3
Kết luận số nghiệm
của PT theo ’
PT vô nghiệm
’<0
’= 0
PT có nghiệm kép

’>0
PT có hai nghiệm
phân biệt
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Lê Thị Trinh
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)