Chương IV. §5. Công thức nghiệm thu gọn
Chia sẻ bởi Nguyễn Thị Nhã Phương |
Ngày 05/05/2019 |
44
Chia sẻ tài liệu: Chương IV. §5. Công thức nghiệm thu gọn thuộc Đại số 9
Nội dung tài liệu:
NHIỆT LIỆT CHÀO MỪNG QUÝ THẦY CÔ VÀ CÁC EM HỌC SINH ĐẾN VỚI TIẾT HỌC NGÀY HÔM NAY
ĐẠI SỐ
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
Công thức nghiệm thu gọn
Áp dụng
Hãy điền vào chỗ trống:
Thay b = 2b’ và vào công thức nghiệm của phương trình (a # 0), ta được:
Nếu thì phương trình có hai nghiệm phân biệt:
……
……
Nếu thì phương trình có nghiệm kép:
……
Nếu thì ∆’< 0 phương trình vô nghiệm.
……
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
Công thức nghiệm thu gọn
Đối với phương trình ax2 + bx +c =0 (a≠0) và b = 2b’, Δ’ = b’2 – ac :
Nếu Δ’ >0 thì phương trình có hai nghiệm phân biệt:
Nếu ∆’ = 0 thì phương trình có nghiệm kép:
Nếu ∆’< 0 thì phương trình vô nghiệm.
Các bước giải phương trình bằng công thức nghiệm thu gọn:
1. Xác định các hệ số a, b’ và c
2. Tính ∆’ và xác định ∆’ > 0 hoặc∆’ = 0 hoặc ∆’ < 0 rồi suy ra số nghiệm của phương trình
3. Tính nghiệm của phương trình (nếu có)
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
Công thức nghiệm thu gọn
Áp dụng
Bài 1: Trong các phương trình sau, phương trình nào dùng
được công thức nghiệm thu gọn để giải:
HƯỚNG DẪN VỀ NHÀ
Nắm vững và áp dụng tốt công thức nghiệm thu gọn để giải phương trình.
Làm bài tập 17,18,19 SGK.
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
ĐẠI SỐ
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
Công thức nghiệm thu gọn
Áp dụng
Hãy điền vào chỗ trống:
Thay b = 2b’ và vào công thức nghiệm của phương trình (a # 0), ta được:
Nếu thì phương trình có hai nghiệm phân biệt:
……
……
Nếu thì phương trình có nghiệm kép:
……
Nếu thì ∆’< 0 phương trình vô nghiệm.
……
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
Công thức nghiệm thu gọn
Đối với phương trình ax2 + bx +c =0 (a≠0) và b = 2b’, Δ’ = b’2 – ac :
Nếu Δ’ >0 thì phương trình có hai nghiệm phân biệt:
Nếu ∆’ = 0 thì phương trình có nghiệm kép:
Nếu ∆’< 0 thì phương trình vô nghiệm.
Các bước giải phương trình bằng công thức nghiệm thu gọn:
1. Xác định các hệ số a, b’ và c
2. Tính ∆’ và xác định ∆’ > 0 hoặc∆’ = 0 hoặc ∆’ < 0 rồi suy ra số nghiệm của phương trình
3. Tính nghiệm của phương trình (nếu có)
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
Công thức nghiệm thu gọn
Áp dụng
Bài 1: Trong các phương trình sau, phương trình nào dùng
được công thức nghiệm thu gọn để giải:
HƯỚNG DẪN VỀ NHÀ
Nắm vững và áp dụng tốt công thức nghiệm thu gọn để giải phương trình.
Làm bài tập 17,18,19 SGK.
Bài 5: CÔNG THỨC NGHIỆM THU GỌN
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thị Nhã Phương
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)