Chương IV. §2. Đồ thị của hàm số y = ax² (a ≠ 0)

Chia sẻ bởi thieu khac dat | Ngày 05/05/2019 | 42

Chia sẻ tài liệu: Chương IV. §2. Đồ thị của hàm số y = ax² (a ≠ 0) thuộc Đại số 9

Nội dung tài liệu:

SỞ GD&ĐT THANH HÓA
PGD&ĐT BÁ THƯỚC
TRƯỜNG THCS LƯƠNG NGOẠI
TIẾT 49: ĐỒ THỊ CỦA HÀM SỐ Y=AX2



GV: THIỆU KHẮC ĐẠT
Ngày 25/2/2016
Kiểm tra bài cũ
1.Điền vào những ô trống các giá trị tương ứng của y trong bảng sau:
2.Điền vào những ô trống các giá trị tương ứng của y trong bảng sau:
18
8
2
0
2
8
18
-8
-2
0
-2
-8
Ta đã biết, trên mặt phẳng tọa độ, đồ thị hàm số y = f(x) là tập hợp các điểm M(x; f(x)). Để xác định một điểm của đồ thị, ta lấy một giá trị của x làm hoành độ thì tung độ là giá trị tương ứng của y = f(x).
Đồ thị của hàm số y = ax + b (a  0) là một đường thẳng. Vậy đồ thị của hàm số y = ax2 (a 0 ) có dạng như thế nào? Hôm nay thầy và các em cùng tìm hiểu điều đó.
Đồ thị hàm số y = 2x2 có phải là đường thẳng không ?
D? th? l� m?t du?ng cong di qua g?c t?a d?
D? th? n?m ? phớa trờn tr?c ho�nh.
D? th? nh?n tr?c Oy l�m tr?c d?i x?ng.
Di?m O l� di?m th?p nh?t c?a d? th?
A
B
C
C’
B’
A’
18
8
2
0
2
8
18
B
VD1: Vẽ đồ thị hàm số y = 2x2
Trên mặt phẳng tọa độ lấy các điểm:
A(-3; 18); B(-2; 8); C(-1; 2); O(0; 0);
C’(1; 2); B’(2; 8); A’(3; 18).
Một số lưu ý khi vẽ đồ thị
Đồ thị hs y=ax2 (a0) không phải là đường gấp khúc
Trên mặt phẳng tọa độ lấy các điểm:
M(-4; -8); N(-2; -2); P(-1;-1/2); O(0; 0);
P’(1; -1/2); N’(2; -2); M’(4; -8)
Bảng một số giá trị tương ứng của x và y
M
N
P
P’
N’
M’
- Đồ thị là một đường cong đi qua gốc tọa độ



- Đồ thị nằm ở phía dưới trục hoành
- Đồ thị nhận Oy làm trục đối xứng
- O là điểm cao nhất của đồ thị



- Đồ thị là một đường cong đi qua
gốc tọa độ
- O là điểm cao nhất của đồ thị
- Đồ thị nằm ở phía dưới trục hoành
(a>0)
(a<0)
- Đồ thị nhận Oy làm trục đối xứng
- Đồ thị là một đường cong đi qua
gốc tọa độ
- Đồ thị nằm ở phía trên trục hoành
- Đồ thị nhận Oy làm trục đối xứng
-O là điểm thấp nhất của đồ thị
Đồ thị là một đường cong đi qua gốc tọa độ
Đồ thị nhận trục Oy làm trục đối xứng
( được gọi là Parabol đỉnh O)
2




(a>0)
(a<0)
Đồ thị của hàm số y = ax2 (a≠0) là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là một Parabol với đỉnh O.
- Nếu a<0 thì đồ thị nằm phía dưới trục hoành, o là điểm cao nhất của thị.
-Nếu a>0 thì đồ thị nằm ở phía trên trục hoành, O là điểm thấp nhất của đồ thị.
(a < 0)
x
y
O
1
2
3
-3
-2
-1
A
A`
B`
C
C`
y = 2x2
(a > 0)




Đồ thị hàm số y = ax2 (a ≠ 0)
+) a >0
Khi x âm (Từ trái sang phải) đồ thị có hướng đi xuống  hs nghịch biến x<0
Khi x dương (Từ trái sang phải) đồ thị có hướng đi lên  hs đồng biến x>0
+) a <0
Khi x âm (Từ trái sang phải) đồ thị có hướng đi lên  hs đồng biến x< 0
Khi x dương (Từ trái sang phải) đồ thị có hướng đi xuống  hs nghịch biến x>0
Có thể
em chưa biết
Trong thực tế ta thường gặp nhiều hiện tượng, vật thể có hình dạng Parabol. Tia nước từ vòi phun lên cao rồi rơi xuống, trái bóng bay từ chân cầu thủ bóng đá (hoặc từ vợt của cầu thủ Tennis) đến khi rơi xuống mặt đất, vạch ra những đường cong có hình dạng Parabol. Khi ta ném một hòn đá, đường đi của hòn đá cũng có hình dạng Parabol. Trường đại học Bách khoa Hà Nội có một cổng nhìn ra đường giải phóng, nó có hình dạng Parabol và người ta thường gọi là “Cổng parabol”.
Một số hiện tượng, vật thể có hình dạng Parabol
Một số hiện tượng, vật thể có hình dạng Parabol
Một số hiện tượng, vật thể có hình dạng Parabol
Một số hiện tượng, vật thể có hình dạng Parabol
Một số hiện tượng, vật thể có hình dạng Parabol
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: thieu khac dat
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)