Chương IV. §1. Hàm số y = ax² (a ≠ 0)
Chia sẻ bởi Nguyễn Trung Hà |
Ngày 05/05/2019 |
46
Chia sẻ tài liệu: Chương IV. §1. Hàm số y = ax² (a ≠ 0) thuộc Đại số 9
Nội dung tài liệu:
nhiệt liệt chào mừng
******-------******
Quý thầy cô
về dự giờ
Đáp án:
Đại lượng y được gọi là hàm số của đại lượng x khi:
- Đại lượng y phụ thuộc vào đại lượng x thay đổi
- Mỗi giá trị của x xác định duy nhất giá trị của y
=> y là hàm số của x, x là biến số
Đáp án: Hàm số y = ax (a ? 0) xác định với mọi giá trị của x thuộc R có tính chất:
a) Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a < 0
Kiểm tra bài cũ
?1: Khi nào đại lượng y được gọi là hàm số của đại lượng x?
?2: Nêu tính chất của hàm số y = ax (a ? 0)?
1. Ví dụ mở đầu.
Quãng đường chuyển động S của các quả cầu được biểu diễn gần đúng bởi công thức:
S = 5t2
Trong đó:
t: là thời gian tính bằng giây S: tính bằng mét.
1 HÀM SỐ y = ax2 (a? 0)
1. Ví dụ mở đầu.
1 HÀM SỐ y = ax2 (a? 0)
Xét công thức: S = 5t2
t
S= 5t2
1
2
3
4
80
45
20
5
Nhận xét:
Quãng đường S phụ thuộc vào thời gian t, với mỗi giá trị của t ta luôn xác định được một và chỉ một giá trị tương ứng S.
Do đó S là một hàm số của t.
-Diện tích hình vuông có cạnh bằng a là: S = a2
Kết luận: Các công thức trên biểu thị các hàm số có dạng: y = ax2 (a ? 0)
-Diện tích hình tròn bán kính R là: S = ?R2
1. Ví dụ mở đầu.
Xét hai hàm số sau: y = 2x2 và y = -2x2
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
Điền những giá trị tương ứng của y trong hai bảng sau.
?1
8
2
0
2
18
-8
-2
0
-2
-18
1 HÀM SỐ y = ax2 (a? 0)
1. Ví dụ mở đầu.
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
?2
Đối với hàm số y = 2x2, dựa vào bảng giá trị em hãy điền từ tăng hoặc giảm vào chỗ trống (...)
- Khi x tăng nhưng luôn âm thì giá trị tương ứng của y
- Khi x tăng nhưng luôn dương thì giá trị tương ứng của y
...
...
giảm.
tăng.
*Đối với hàm số y = - 2x2, dựa vào bảng giá trị ta cũng có nhận xét tương tự:
Khi x tăng nhưng luôn âm thì giá trị tương ứng của y tăng.
Khi x tăng nhưng luôn dương thì giá trị tương ứng của y giảm.
- Hµm sè y= 2x2 nghich biÕn khi x<0 vµ ®ång biÕn khi x>0
- Hµm sè y= -2x2 ®ång biÕn khi x<0 vµ nghÞch biÕn khi x>0
1 HÀM SỐ y = ax2 (a? 0)
1. Ví dụ mở đầu.
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
- Hµm sè y= 2x2 nghich biÕn khi x<0 vµ ®ång biÕn khi x>0
- Hµm sè y= -2x2 ®ång biÕn khi x<0 vµ nghÞch biÕn khi x>0
-Nếu a<0 thì hàm số đồng biến khi x<0 và nghịch x>0.
-Nếu a>0 thì hàm số nghịch biến khi x<0 và đồng biến khi x>0.
Hàm số y = ax2 (a≠0) xác định với mọi giá trị của x thuộc R, có tính chất sau:
Chửụng 3: HAỉM SO y = ax2 - PHệễNG TRèNH BAC HAI MOT AN SO
1 HÀM SỐ y = ax2 (a? 0)
Chửụng 3: HAỉM SO y = ax2 - PHệễNG TRèNH BAC HAI MOT AN SO
1 HÀM SỐ y = ax2 (a? 0)
1. Ví dụ mở đầu.
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
Đối với hàm số y=2x2, khi x ? 0 giá trị của y dương hay âm? Khi x=0 thì sao?.
?3
Tương tự đối với hàm số y=-2x2, khi x ? 0 giá trị của y dương hay âm? Khi x=0 thì sao?.
Hàm số y= 2x2 có giá trị y>0 với mọi x?0, y = 0 khi x = 0.
Giỏ tr? nh? nh?t c?a hm s? l y = 0.
Nếu a>0 thì y > 0 với mọi x ≠ 0; y =0 khi x =0. Giá trị nhỏ
nhất của hàm số là y = 0.
Nhận xét:
Hàm số y= -2x2 có giá trị y<0 với mọi x?0, y = 0 khi x = 0.
Giỏ tr? l?n nh?t c?a hm s? l y = 0.
Nếu a<0 thì y < 0 với mọi x ≠ 0; y =0 khi x =0. Giá trị lớn
nhất của hàm số là y = 0.
1. Ví dụ mở đầu.
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
Điền những giá trị tương ứng của y trong hai bảng sau.
?4
0
0
4,5
2
0,5
0,5
2
4,5
- 4,5
- 4,5
- 2
- 0,5
- 0,5
- 2
Chương iv: hàm số y = ax2 ( a ? 0 ) -phương trình bậc hai một ẩn.
§1 hµm sè y = ax2 ( a ≠ 0 ).
-Nếu a>0 thì y > 0 với mọi x ≠ 0; y =0 khi x = 0. Giá trị nhỏ nhất của hàm số là y = 0.
- Nếu a<0 thì y < 0 với mọi x ≠ 0; y =0 khi x = 0. Giá trị lớn nhất của hàm số là y = 0.
-Nếu a>0 thì hàm số nghịch biến khi x<0 và đồng biến khi x>0.
-Nếu a<0 thì hàm số đồng biến khi x<0 và nghịch x>0
Kiến thức cần nắm qua bài học
Tính chất
Hàm số y = ax2 (a≠0) xác định với mọi giá trị của x thuộc R, có các tính chất sau:
Nhận xét
Dạng TQ hàm số
y = ax2 (a≠0)
2. Bài đọc thêm
3. Áp dụng:
Dùng máy tính bỏ túi tính giá trị S rồi điền kết quả vào bảng sau (cho π≈3,14, làm tròn kết quả đến chữ số thập phân thứ hai)
52,53
5,89
1,02
14,51
1. Cú th? em chua bi?t ?
Hướng dẫn về nhà
Học kỹ tính chất của hàm số y=ax2 với a khác 0
Làm các bài tập1, 2,3 trang 31 (SGK).
3. Hu?ng d?n bi t?p v? nh.
Bi 3 trang 31 - SGK.
a) Công thức: F = av2
Biết F = 120N; V= 2 m/s. Tính a, viết công thức.
b) Với công thức tìm ở câu a tìm F khi v =10 m/s;
v = 20 m/s. ( thay giá trị rồi tìm)
c) Khi v = 90 km/h = ? m/s. Tính F rồi so sánh với F1=12000N, Từ đó rút ra kết luận.
XIN CHÂN THÀNH CẢM ƠN
QUÝ THẦY CÔ GIÁO CÙNG TẤT CẢ
CÁC EM HỌC SINH THÂN MẾN!
XIN CHÂN THÀNH CẢM ƠN
QUÝ THẦY CÔ GIÁO CÙNG TẤT CẢ
CÁC EM HỌC SINH THÂN MẾN!
******-------******
Quý thầy cô
về dự giờ
Đáp án:
Đại lượng y được gọi là hàm số của đại lượng x khi:
- Đại lượng y phụ thuộc vào đại lượng x thay đổi
- Mỗi giá trị của x xác định duy nhất giá trị của y
=> y là hàm số của x, x là biến số
Đáp án: Hàm số y = ax (a ? 0) xác định với mọi giá trị của x thuộc R có tính chất:
a) Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a < 0
Kiểm tra bài cũ
?1: Khi nào đại lượng y được gọi là hàm số của đại lượng x?
?2: Nêu tính chất của hàm số y = ax (a ? 0)?
1. Ví dụ mở đầu.
Quãng đường chuyển động S của các quả cầu được biểu diễn gần đúng bởi công thức:
S = 5t2
Trong đó:
t: là thời gian tính bằng giây S: tính bằng mét.
1 HÀM SỐ y = ax2 (a? 0)
1. Ví dụ mở đầu.
1 HÀM SỐ y = ax2 (a? 0)
Xét công thức: S = 5t2
t
S= 5t2
1
2
3
4
80
45
20
5
Nhận xét:
Quãng đường S phụ thuộc vào thời gian t, với mỗi giá trị của t ta luôn xác định được một và chỉ một giá trị tương ứng S.
Do đó S là một hàm số của t.
-Diện tích hình vuông có cạnh bằng a là: S = a2
Kết luận: Các công thức trên biểu thị các hàm số có dạng: y = ax2 (a ? 0)
-Diện tích hình tròn bán kính R là: S = ?R2
1. Ví dụ mở đầu.
Xét hai hàm số sau: y = 2x2 và y = -2x2
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
Điền những giá trị tương ứng của y trong hai bảng sau.
?1
8
2
0
2
18
-8
-2
0
-2
-18
1 HÀM SỐ y = ax2 (a? 0)
1. Ví dụ mở đầu.
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
?2
Đối với hàm số y = 2x2, dựa vào bảng giá trị em hãy điền từ tăng hoặc giảm vào chỗ trống (...)
- Khi x tăng nhưng luôn âm thì giá trị tương ứng của y
- Khi x tăng nhưng luôn dương thì giá trị tương ứng của y
...
...
giảm.
tăng.
*Đối với hàm số y = - 2x2, dựa vào bảng giá trị ta cũng có nhận xét tương tự:
Khi x tăng nhưng luôn âm thì giá trị tương ứng của y tăng.
Khi x tăng nhưng luôn dương thì giá trị tương ứng của y giảm.
- Hµm sè y= 2x2 nghich biÕn khi x<0 vµ ®ång biÕn khi x>0
- Hµm sè y= -2x2 ®ång biÕn khi x<0 vµ nghÞch biÕn khi x>0
1 HÀM SỐ y = ax2 (a? 0)
1. Ví dụ mở đầu.
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
- Hµm sè y= 2x2 nghich biÕn khi x<0 vµ ®ång biÕn khi x>0
- Hµm sè y= -2x2 ®ång biÕn khi x<0 vµ nghÞch biÕn khi x>0
-Nếu a<0 thì hàm số đồng biến khi x<0 và nghịch x>0.
-Nếu a>0 thì hàm số nghịch biến khi x<0 và đồng biến khi x>0.
Hàm số y = ax2 (a≠0) xác định với mọi giá trị của x thuộc R, có tính chất sau:
Chửụng 3: HAỉM SO y = ax2 - PHệễNG TRèNH BAC HAI MOT AN SO
1 HÀM SỐ y = ax2 (a? 0)
Chửụng 3: HAỉM SO y = ax2 - PHệễNG TRèNH BAC HAI MOT AN SO
1 HÀM SỐ y = ax2 (a? 0)
1. Ví dụ mở đầu.
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
Đối với hàm số y=2x2, khi x ? 0 giá trị của y dương hay âm? Khi x=0 thì sao?.
?3
Tương tự đối với hàm số y=-2x2, khi x ? 0 giá trị của y dương hay âm? Khi x=0 thì sao?.
Hàm số y= 2x2 có giá trị y>0 với mọi x?0, y = 0 khi x = 0.
Giỏ tr? nh? nh?t c?a hm s? l y = 0.
Nếu a>0 thì y > 0 với mọi x ≠ 0; y =0 khi x =0. Giá trị nhỏ
nhất của hàm số là y = 0.
Nhận xét:
Hàm số y= -2x2 có giá trị y<0 với mọi x?0, y = 0 khi x = 0.
Giỏ tr? l?n nh?t c?a hm s? l y = 0.
Nếu a<0 thì y < 0 với mọi x ≠ 0; y =0 khi x =0. Giá trị lớn
nhất của hàm số là y = 0.
1. Ví dụ mở đầu.
2. Tính chất của hàm số y = ax2 ( a ? 0 ).
Điền những giá trị tương ứng của y trong hai bảng sau.
?4
0
0
4,5
2
0,5
0,5
2
4,5
- 4,5
- 4,5
- 2
- 0,5
- 0,5
- 2
Chương iv: hàm số y = ax2 ( a ? 0 ) -phương trình bậc hai một ẩn.
§1 hµm sè y = ax2 ( a ≠ 0 ).
-Nếu a>0 thì y > 0 với mọi x ≠ 0; y =0 khi x = 0. Giá trị nhỏ nhất của hàm số là y = 0.
- Nếu a<0 thì y < 0 với mọi x ≠ 0; y =0 khi x = 0. Giá trị lớn nhất của hàm số là y = 0.
-Nếu a>0 thì hàm số nghịch biến khi x<0 và đồng biến khi x>0.
-Nếu a<0 thì hàm số đồng biến khi x<0 và nghịch x>0
Kiến thức cần nắm qua bài học
Tính chất
Hàm số y = ax2 (a≠0) xác định với mọi giá trị của x thuộc R, có các tính chất sau:
Nhận xét
Dạng TQ hàm số
y = ax2 (a≠0)
2. Bài đọc thêm
3. Áp dụng:
Dùng máy tính bỏ túi tính giá trị S rồi điền kết quả vào bảng sau (cho π≈3,14, làm tròn kết quả đến chữ số thập phân thứ hai)
52,53
5,89
1,02
14,51
1. Cú th? em chua bi?t ?
Hướng dẫn về nhà
Học kỹ tính chất của hàm số y=ax2 với a khác 0
Làm các bài tập1, 2,3 trang 31 (SGK).
3. Hu?ng d?n bi t?p v? nh.
Bi 3 trang 31 - SGK.
a) Công thức: F = av2
Biết F = 120N; V= 2 m/s. Tính a, viết công thức.
b) Với công thức tìm ở câu a tìm F khi v =10 m/s;
v = 20 m/s. ( thay giá trị rồi tìm)
c) Khi v = 90 km/h = ? m/s. Tính F rồi so sánh với F1=12000N, Từ đó rút ra kết luận.
XIN CHÂN THÀNH CẢM ƠN
QUÝ THẦY CÔ GIÁO CÙNG TẤT CẢ
CÁC EM HỌC SINH THÂN MẾN!
XIN CHÂN THÀNH CẢM ƠN
QUÝ THẦY CÔ GIÁO CÙNG TẤT CẢ
CÁC EM HỌC SINH THÂN MẾN!
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Trung Hà
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)