Chương IV. §1. Hàm số y = ax² (a ≠ 0)
Chia sẻ bởi Nguyễn Thanh Hải |
Ngày 05/05/2019 |
43
Chia sẻ tài liệu: Chương IV. §1. Hàm số y = ax² (a ≠ 0) thuộc Đại số 9
Nội dung tài liệu:
HÀM SỐ y = ax2
ĐẠI SỐ 9
Tiết 47
1. Ví dụ mở đầu:
Tại đỉnh tháp nghiêng Pi-da (Pisa), ở I-ta-li-a, Ga-li-lê (G.Gallilei) đã thả hai quả cầu bằng chì có trọng lượng khác nhau để làm thí nghiệm nghiên cứu chuyển động của một vật rơi tự do. Ông khẳng định rằng, khi một vật rơi tự do (không kể đến sức cản của không khí), vận tốc của nó tăng dần và không phụ thuộc vào trọng lượng của vật. Quãng đường chuyển động s của nó được biểu diễn gần đúng bởi công thức:
s = 5t2
Trong đó t là thời gian tính bằng giây, s tính bằng mét.
Theo công thức: s = 5t2
Bảng sau biểu thị vài cặp giá trị tương ứng của t và s
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
1. Ví dụ mở đầu:
s = 5t2
y = ax2 (a ≠ 0)
Trong các hàm số sau, đâu là hàm số y = ax2; Xác định hệ số a:
c/ y = 3x2 + 1
d/ y = -x2
Hàm số y = ax2 và hệ số a của nó là:
a = -1
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
1. Ví dụ mở đầu:
s = 5t2
y = ax2 (a ≠ 0)
2. Tính chất của hàm số y = ax2 (a≠0):
Xét hai hàm số sau: y = 2x2 và y = -2x2
?1 Điền vào những ô trống các giá trị tương ứng của y trong hai bảng sau:
8
2
0
2
18
-8
-2
0
-2
-18
a/ Tổng quát: Hàm số y = ax2 (a≠0) xác
định với mọi giá trị của x thuộc R:
b/ Tính chất:
-Nếu a>0 thì hàm số nghịch biến khi x<0
và đồng biến khi x>0
-Nếu a<0 thì hàm số đồng biến khi x<0
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
1. Ví dụ mở đầu:
y = ax2 (a ≠ 0)
2. Tính chất của hàm số y = ax2 (a ≠ 0):
a/ Tổng quát: Hàm số y = ax2 (a≠0) xác
định với mọi giá trị của x thuộc R:
và đồng biến khi x>0
và nghịch biến khi x>0
b/ Tính chất:
-Nếu a>0 thì hàm số nghịch biến khi x<0
-Nếu a<0 thì hàm số đồng biến khi x<0
?3 Đối với hàm số y = 2x2, khi x ≠ 0 ,giá trị của y dương hay âm? Khi x =0 thì sao?
- Tương tự đối với hàm số y = - 2x2
Khi x 0 giá trị của y dương.
Khi x = 0 thì y = 0
y = 0 là giá trị nhỏ nhất của hàm số
Khi x 0 giá trị của y âm.
Khi x = 0 thì y = 0
y = 0 là giá trị lớn nhất của hàm số
c/ Nhận xét:
Nếu a > 0 thì y > 0 với mọi x0; y=0 khi x = 0. Giá trị nhỏ nhất của hàm số là y = 0.
Nếu a < 0 thì y < 0 với mọi x0; y=0 khi x = 0. Giá trị lớn nhất của hàm số là y = 0.
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
1. Ví dụ mở đầu:
y = ax2 (a ≠ 0)
2. Tính chất của hàm số y = ax2 (a≠0):
a/ Tổng quát: Hàm số y = ax2 (a≠0) xác
định với mọi giá trị của x thuộc R:
và đồng biến khi x>0
và nghịch biến khi x>0
b/ Tính chất:
-Nếu a>0 thì hàm số nghịch biến khi x<0
-Nếu a<0 thì hàm số đồng biến khi x<0
c/ Nhận xét:
Nếu a > 0 thì y > 0 với mọi x0; y=0 khi x = 0. Giá trị nhỏ nhất của hàm số là y = 0.
Nếu a < 0 thì y < 0 với mọi x0; y=0 khi x = 0. Giá trị lớn nhất của hàm số là y = 0.
4,5
2
0,5
0
4,5
2
0,5
-4,5
-0,5
-2
-4,5
0
-0,5
-2
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
Hàm số
y = ax2
Câu 1: Cho hàm số y= 2013x2
Hàm số đồng biến.
Hàm số nghịch biến.
Hàm số đồng biến khi x>0, nghịch biến khi x<0.
Tất cả các ý trên đều đúng.
A
B
C
D
y=2x+2
y=-
y=-2 x2
Tất cả các ý trên đều sai.
A
B
C
D
Câu 3: Cho hàm số y= ( - 2)x2
Hàm số đồng biến khi x<0, nghịch biến khi x>0
Giá trị hàm số luôn luôn âm
Tất cả các ý trên đều sai.
Hàm số đồng biến khi x>0, nghịch biến khi x<0
A
B
C
D
BT 1a/30
14,51
1,02
5,89
52,53
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
Hướng dẫn về nhà:
-Học bài nắm lại tính chất của hàm số y = ax2 (a ≠ 0) và các vấn đề liên quan.
-Xem lại các Bài tập đã giải.
-Làm các BT còn lại 1b, c; 2; 3/31
1. Ví dụ mở đầu: y = ax2 (a ≠ 0)
2. Tính chất của hàm số y = ax2 (a≠0):
a/ Tổng quát: Hàm số y = ax2 (a≠0) xác định với mọi giá trị của x thuộc R
b/ Tính chất:
-Nếu a>0 thì hàm số nghịch biến khi x<0 và đồng biến khi x>0
-Nếu a<0 thì hàm số đồng biến khi x<0 và nghịch x>0
c/ Nhận xét:
Nếu a > 0 thì y > 0 với mọi x0; y=0 khi x = 0. Giá trị nhỏ nhất của hàm số là y = 0.
Nếu a < 0 thì y < 0 với mọi x0; y=0 khi x = 0. Giá trị lớn nhất của hàm số là y = 0.
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
ĐẠI SỐ 9
Tiết 47
1. Ví dụ mở đầu:
Tại đỉnh tháp nghiêng Pi-da (Pisa), ở I-ta-li-a, Ga-li-lê (G.Gallilei) đã thả hai quả cầu bằng chì có trọng lượng khác nhau để làm thí nghiệm nghiên cứu chuyển động của một vật rơi tự do. Ông khẳng định rằng, khi một vật rơi tự do (không kể đến sức cản của không khí), vận tốc của nó tăng dần và không phụ thuộc vào trọng lượng của vật. Quãng đường chuyển động s của nó được biểu diễn gần đúng bởi công thức:
s = 5t2
Trong đó t là thời gian tính bằng giây, s tính bằng mét.
Theo công thức: s = 5t2
Bảng sau biểu thị vài cặp giá trị tương ứng của t và s
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
1. Ví dụ mở đầu:
s = 5t2
y = ax2 (a ≠ 0)
Trong các hàm số sau, đâu là hàm số y = ax2; Xác định hệ số a:
c/ y = 3x2 + 1
d/ y = -x2
Hàm số y = ax2 và hệ số a của nó là:
a = -1
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
1. Ví dụ mở đầu:
s = 5t2
y = ax2 (a ≠ 0)
2. Tính chất của hàm số y = ax2 (a≠0):
Xét hai hàm số sau: y = 2x2 và y = -2x2
?1 Điền vào những ô trống các giá trị tương ứng của y trong hai bảng sau:
8
2
0
2
18
-8
-2
0
-2
-18
a/ Tổng quát: Hàm số y = ax2 (a≠0) xác
định với mọi giá trị của x thuộc R:
b/ Tính chất:
-Nếu a>0 thì hàm số nghịch biến khi x<0
và đồng biến khi x>0
-Nếu a<0 thì hàm số đồng biến khi x<0
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
1. Ví dụ mở đầu:
y = ax2 (a ≠ 0)
2. Tính chất của hàm số y = ax2 (a ≠ 0):
a/ Tổng quát: Hàm số y = ax2 (a≠0) xác
định với mọi giá trị của x thuộc R:
và đồng biến khi x>0
và nghịch biến khi x>0
b/ Tính chất:
-Nếu a>0 thì hàm số nghịch biến khi x<0
-Nếu a<0 thì hàm số đồng biến khi x<0
?3 Đối với hàm số y = 2x2, khi x ≠ 0 ,giá trị của y dương hay âm? Khi x =0 thì sao?
- Tương tự đối với hàm số y = - 2x2
Khi x 0 giá trị của y dương.
Khi x = 0 thì y = 0
y = 0 là giá trị nhỏ nhất của hàm số
Khi x 0 giá trị của y âm.
Khi x = 0 thì y = 0
y = 0 là giá trị lớn nhất của hàm số
c/ Nhận xét:
Nếu a > 0 thì y > 0 với mọi x0; y=0 khi x = 0. Giá trị nhỏ nhất của hàm số là y = 0.
Nếu a < 0 thì y < 0 với mọi x0; y=0 khi x = 0. Giá trị lớn nhất của hàm số là y = 0.
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
1. Ví dụ mở đầu:
y = ax2 (a ≠ 0)
2. Tính chất của hàm số y = ax2 (a≠0):
a/ Tổng quát: Hàm số y = ax2 (a≠0) xác
định với mọi giá trị của x thuộc R:
và đồng biến khi x>0
và nghịch biến khi x>0
b/ Tính chất:
-Nếu a>0 thì hàm số nghịch biến khi x<0
-Nếu a<0 thì hàm số đồng biến khi x<0
c/ Nhận xét:
Nếu a > 0 thì y > 0 với mọi x0; y=0 khi x = 0. Giá trị nhỏ nhất của hàm số là y = 0.
Nếu a < 0 thì y < 0 với mọi x0; y=0 khi x = 0. Giá trị lớn nhất của hàm số là y = 0.
4,5
2
0,5
0
4,5
2
0,5
-4,5
-0,5
-2
-4,5
0
-0,5
-2
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
Hàm số
y = ax2
Câu 1: Cho hàm số y= 2013x2
Hàm số đồng biến.
Hàm số nghịch biến.
Hàm số đồng biến khi x>0, nghịch biến khi x<0.
Tất cả các ý trên đều đúng.
A
B
C
D
y=2x+2
y=-
y=-2 x2
Tất cả các ý trên đều sai.
A
B
C
D
Câu 3: Cho hàm số y= ( - 2)x2
Hàm số đồng biến khi x<0, nghịch biến khi x>0
Giá trị hàm số luôn luôn âm
Tất cả các ý trên đều sai.
Hàm số đồng biến khi x>0, nghịch biến khi x<0
A
B
C
D
BT 1a/30
14,51
1,02
5,89
52,53
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
Hướng dẫn về nhà:
-Học bài nắm lại tính chất của hàm số y = ax2 (a ≠ 0) và các vấn đề liên quan.
-Xem lại các Bài tập đã giải.
-Làm các BT còn lại 1b, c; 2; 3/31
1. Ví dụ mở đầu: y = ax2 (a ≠ 0)
2. Tính chất của hàm số y = ax2 (a≠0):
a/ Tổng quát: Hàm số y = ax2 (a≠0) xác định với mọi giá trị của x thuộc R
b/ Tính chất:
-Nếu a>0 thì hàm số nghịch biến khi x<0 và đồng biến khi x>0
-Nếu a<0 thì hàm số đồng biến khi x<0 và nghịch x>0
c/ Nhận xét:
Nếu a > 0 thì y > 0 với mọi x0; y=0 khi x = 0. Giá trị nhỏ nhất của hàm số là y = 0.
Nếu a < 0 thì y < 0 với mọi x0; y=0 khi x = 0. Giá trị lớn nhất của hàm số là y = 0.
Chương IV: HÀM SỐ y = ax2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
TIẾT 47: HÀM SỐ y = ax2 (a ≠ 0)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thanh Hải
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)