Chương III. §5. Trường hợp đồng dạng thứ nhất

Chia sẻ bởi Nguyễn Trung Thành | Ngày 04/05/2019 | 45

Chia sẻ tài liệu: Chương III. §5. Trường hợp đồng dạng thứ nhất thuộc Hình học 8

Nội dung tài liệu:

QUÝ THẦY CÔ VỀ DỰ GIỜ HỘI THI GIÁO VIÊN THIẾT KẾ VÀ SỬ DỤNG GIÁO ÁN ĐIỆN TỬ GIỎI CẤP HUYỆN BẬC THCS
NĂM HỌC 2010 - 2011
Chào mừng
Người thực hiện : Nguyễn Đăng Khương
TRƯỜNG THCS NGỌC WANG
KIỂM TRA BÀI CŨ
Hãy phát biểu định nghĩa hai tam giác đồng dạng
+ ∆ A’B’C’ ∆ ABC nếu:


Ta đã biết thế nào là hai tam giác đồng dạng .
Vậy có cách nào để nhận biết được hai tam giác đồng dạng với nhau mà không cần đo góc của chúng không ?
Để trả lời câu hỏi đó chúng ta cùng tìm hiểu nội dung bài học ngày hôm nay

TIẾT 44
HÌNH HỌC 8
TRƯỜNG HỢP ĐỒNG DẠNG THỨ NHẤT
§5
1.Định lí

Hai tam giác ABC và A`B`C`có kích thước như hình vẽ (có cùng đơn vị đo là cm)
?1
Trên các cạnh AB và AC của tam giác ABC lần lượt lấy hai điểm M,N sao cho AM=A’B’=2cm; AN=A’C’=3 cm.
a)Tính độ dài đoạn thẳng MN.
b)Có nhận xét gì về mối quan hệ giữa các tam giác ABC,AMN và A’B’C’
2
3
4
Từ kết quả trên cho ta phát hiện gì về mối quan hệ giữa hai tam giác khi
biết độ dài các cạnh của chúng tương ứng tỉ lệ với nhau?
ĐỊNH LÍ (SGK-T73)
Nếu 3 cạnh của tam giác này tỉ lệ với 3 cạnh của tam giác kia thì hai tam giác đó đồng dạng.
Bước 1: - Dựng tam giác thứ ba (AMN) sao cho tam giác này đồng dạng với tam giác thứ nhất (ABC).
Bước 2: - Chứng minh: tam giác thứ ba (AMN) bằng tam giác
thứ hai (A’B’C’).
Từ đó, suy ra A’B’C’ đồng dạng với ABC.
Phương pháp chứng minh
Trên tia AB đặt đoạn thẳng AM = A’B’.
Vẽ đường thẳng MN // BC (N  AC).
, mà AM = A’B’
Chứng minh
Xét các tam giác AMN, ABC và A’B’C’
Hai tam giác AMN và A’B’C’ có ba cạnh bằng nhau từng đôi một
AM = A’B’(cách dựng);
Do đó AMN = A’B’C’(c.c.c)
2. Áp dụng:
?2. Tìm trong hình vẽ 34 các cặp tam giác đồng dạng?
ABC và IKH có:
Do đó ABC không đồng dạng với IKH
Hình 34
A/
C
A
B
C/
Đo gián tiếp chiều cao của cây
LIÊN HỆ THỰC TẾ
Đo khoảng cách giữa hai địa điểm trong đó có một địa điểm không thể tới được
Ngô Khương - Bắc Giang
Ta-lét đã tính được chiều cao của một kim tự tháp Ai Cập nhờ áp dụng tính chất của tam giác đồng dạng.
b) Tính tỉ số chu vi của hai tam giác ABC và A’B’C’ :
a) ABC và A’B’C’ có :
Khi hai tam giác đồng dạng thì tỉ số chu vi của hai tam giác và tỉ số đồng dạng của chúng như thế nào với nhau ?
BÀI TẬP
a)Nêu trường hợp đồng dạng thứ nhất của hai tam giác.
b)Hãy so sánh trường hợp bằng nhau thứ nhất của hai tam giác với
trường hợp đồng dạng thứ nhất của hai tam giác.
Trả lời
a)Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.
b)Giống nhau:Chỉ xét đến điều kiện ba cạnh.
Khác nhau:
-Trường hợp bằng nhau thứ nhất: Ba cạnh của tam giác này bằng ba cạnh của tam giác kia.
-Trường hợp đồng dạng thứ nhất:Ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia.

HƯỚNG DẪN VỀ NHÀ
+ Học thuộc định lý về trường hợp đồng dạng thứ nhất của hai tam giác.

+ Làm các bài tập 30; 31 trang 75 SGK.

+ Chuẩn bị bài “Trường hợp đồng dạng thứ hai”.
Bài 30sgk/75: Tam giác ABC có cạnh AB = 3cm
AC =5cm BC = 7cm . Tam giác A‘B’C’ đồng
dạng với tam giác ABC và có chu vi bằng 55cm
Hãy tính độ dài các cạnh của tam giác A’B’C’
( làm tròn đến chữ số thập phân thứ hai)
3cm
7cm
5cm
GIẢI
Hướng dẫn bài 30 SGK/75
Hãy chọn câu trả lời mà em cho là đúng:
Cho  RSK và PQM có:




RSK PQM RSK QPM

RSK MPQ RSK QMP


S
S
S
S
B
C
D
A
Nếu RSK và PQM có :









Cả A, B, C đều sai


C
A
D
B
Hãy chọn câu đúng
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Trung Thành
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)