Chương III. §4. Khái niệm hai tam giác đồng dạng
Chia sẻ bởi Ninh Thi Kim Dung |
Ngày 04/05/2019 |
59
Chia sẻ tài liệu: Chương III. §4. Khái niệm hai tam giác đồng dạng thuộc Hình học 8
Nội dung tài liệu:
Nhiệt liệt Chào mừng thầy cô và các em học sinh về dự tiết học !
Giáo viên thực hiện : Ninh thị kim dung
Trường thcs cổ thành
KIỂM TRA BÀI CŨ
Hình thức kiểm tra bài cũ:
+1 học sinh lên bảng để kiểm tra bài cũ
+ Học sinh ở dưới lớp sẽ lần lượt đặt 2 câu hỏi về nội dung kiến thức đã học ở bài trước, để hỏi bạn.
+ Học sinh dưới lớp nghe bạn trả lời,nhận xét.
KIỂM TRA BÀI CŨ
1. Nªu ®Þnh nghÜa hai tam gi¸c ®ång d¹ng, ®Þnh lÝ vÒ hai tam gi¸c ®ång d¹ng ?
Định nghĩa: Tam giác A`B`C` gọi là đồng dạng với tam giác ABC Nếu:
M
N
N
N
M
M
Đáp án
Định lí: Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho
Các tính chất của tam giác đồng dạng
Tính chất 1: Mỗi tam giác đồng dạng với chính nó.
Tính chất 2: Nếu ? A`B`C` đồng dạng với ? ABC thì ? ABC đồng dạng với ? A`B`C`
Tính chất 3: Nếu ? A`B`C` đồng dạng với ? A"B"C" và ? A"B"C" đồng dạng với ? ABC thì ? A`B`C` đồng dạng với ? ABC.
KIỂM TRA BÀI CŨ
Nêu nhận xét về các cạnh của A’B’C’ với các cạnh tương ứng của ABC ?
Cho hình vẽ:
A’B’C’ và ABC có:
Cần có thờm di?u ki?n gì:
?
Nên AMN ABC (đ/l tam giác đồng dạng)
?1( SGK/73)
2
3
4
Từ (1) và (2), suy ra:
N
M
(1)
S
(2)
a) Xét ∆ABC có:
b) Nhận xét về mối quan hệ giữa các tam giác ABC, AMN, A’B’C’ ?
Suy ra:
Vì MN // BC ( cmt)
MN // BC
(Hệ quả của đ/l Ta-lét )
(Đ/l Ta-lét đảo)
=
(c.c.c)
AM=A’B’, AN=A’C’ và MN=B’C’
b)
Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia
thì hai tam giác đó đồng dạng.
Định lý:
(Sgk/73)
Tiết 44:
1. Định lý:
(Sgk/73)
2. p d?ng:
[?2](Sgk/74): Tìm trong hình vẽ 34 các cặp tam giác đồng dạng?
ABC không đồng dạng với IKH
Đáp án:
DFE không đồng dạng với IKH
Hình 34
Vì ABC và IKH có:
1. Lập tỉ số của cặp cạnh nhỏ nhất.
2. Lập tỉ số của cặp cạnh lớn nhất.
3. Lập tỉ số của cặp cạnh còn lại.
Tiết 44:
Hết giờ
Tính tỉ số chu vi của hai tam giác đồng dạng .
Nhận xét:
Tỉ số chu vi của hai tam giác đồng dạng
bằng tỉ số đồng dạng.
Cho tam giác ABC vuông tại A có AB= 6cm, AC= 8cm và tam giác A’B’C’ vuông tại A’ có A’B’= 9cm, A’C` = 12 cm . Hai tam giác vuông ABC và A’B’C’ có đồng dạng với nhau không? Vì sao?
Đều xét đến điều kiện ba cạnh.
Trường hợp đồng dạng thứ nhất
Nêu sự giống và khác nhau giữa trường hợp đồng dạng thứ nhất với trường hợp bằng nhau thứ nhất (c-c-c) của hai tam giác.
Khác nhau:
Giống:
- Ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia.
- Ba cạnh của tam giác này bằng ba cạnh của tam giác kia.
Trường hợp bằng nhau thứ nhất: (c.c.c)
kim tự tháp ở ai cập
Ta-let (624 - 547:TCN)
có thể em chưa biết
Đỳng
Sai
Phát biểu sau đúng hay sai ?
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó đồng dạng ?
0
1
2
3
4
5
6
7
8
9
10
C. 1dm, 2dm, 2dm v 1dm, 1dm, 0.5dm.
B. 3cm, 4cm, 6cm v 9cm, 15cm, 18cm.
A. 4cm, 5cm, 6cm v 8mm, 10mm, 12mm.
Hai tam giác mà các cạnh có độ dài như sau thì đồng dạng với nhau:
Kết quả nào sau đây sai ?
0
1
2
3
4
5
6
7
8
9
10
CÔNG VIỆC VỀ NHÀ
+ Học thuộc định lý về trường hợp đồng dạng thứ nhất của hai tam giác.
+ Hoàn thành các bài tập giao trong bài học.
+ Làm các bài tập 29;30; 31 trang 75 SGK.
+ Chuẩn bị bài "Trường hợp đồng dạng thứ hai": làm bài tập ?1 SGK trang 75.
xin chân thành cảm ơn
các thầy cô giáo
và các EM học sinh
Giáo viên thực hiện : Ninh thị kim dung
Trường thcs cổ thành
KIỂM TRA BÀI CŨ
Hình thức kiểm tra bài cũ:
+1 học sinh lên bảng để kiểm tra bài cũ
+ Học sinh ở dưới lớp sẽ lần lượt đặt 2 câu hỏi về nội dung kiến thức đã học ở bài trước, để hỏi bạn.
+ Học sinh dưới lớp nghe bạn trả lời,nhận xét.
KIỂM TRA BÀI CŨ
1. Nªu ®Þnh nghÜa hai tam gi¸c ®ång d¹ng, ®Þnh lÝ vÒ hai tam gi¸c ®ång d¹ng ?
Định nghĩa: Tam giác A`B`C` gọi là đồng dạng với tam giác ABC Nếu:
M
N
N
N
M
M
Đáp án
Định lí: Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho
Các tính chất của tam giác đồng dạng
Tính chất 1: Mỗi tam giác đồng dạng với chính nó.
Tính chất 2: Nếu ? A`B`C` đồng dạng với ? ABC thì ? ABC đồng dạng với ? A`B`C`
Tính chất 3: Nếu ? A`B`C` đồng dạng với ? A"B"C" và ? A"B"C" đồng dạng với ? ABC thì ? A`B`C` đồng dạng với ? ABC.
KIỂM TRA BÀI CŨ
Nêu nhận xét về các cạnh của A’B’C’ với các cạnh tương ứng của ABC ?
Cho hình vẽ:
A’B’C’ và ABC có:
Cần có thờm di?u ki?n gì:
?
Nên AMN ABC (đ/l tam giác đồng dạng)
?1( SGK/73)
2
3
4
Từ (1) và (2), suy ra:
N
M
(1)
S
(2)
a) Xét ∆ABC có:
b) Nhận xét về mối quan hệ giữa các tam giác ABC, AMN, A’B’C’ ?
Suy ra:
Vì MN // BC ( cmt)
MN // BC
(Hệ quả của đ/l Ta-lét )
(Đ/l Ta-lét đảo)
=
(c.c.c)
AM=A’B’, AN=A’C’ và MN=B’C’
b)
Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia
thì hai tam giác đó đồng dạng.
Định lý:
(Sgk/73)
Tiết 44:
1. Định lý:
(Sgk/73)
2. p d?ng:
[?2](Sgk/74): Tìm trong hình vẽ 34 các cặp tam giác đồng dạng?
ABC không đồng dạng với IKH
Đáp án:
DFE không đồng dạng với IKH
Hình 34
Vì ABC và IKH có:
1. Lập tỉ số của cặp cạnh nhỏ nhất.
2. Lập tỉ số của cặp cạnh lớn nhất.
3. Lập tỉ số của cặp cạnh còn lại.
Tiết 44:
Hết giờ
Tính tỉ số chu vi của hai tam giác đồng dạng .
Nhận xét:
Tỉ số chu vi của hai tam giác đồng dạng
bằng tỉ số đồng dạng.
Cho tam giác ABC vuông tại A có AB= 6cm, AC= 8cm và tam giác A’B’C’ vuông tại A’ có A’B’= 9cm, A’C` = 12 cm . Hai tam giác vuông ABC và A’B’C’ có đồng dạng với nhau không? Vì sao?
Đều xét đến điều kiện ba cạnh.
Trường hợp đồng dạng thứ nhất
Nêu sự giống và khác nhau giữa trường hợp đồng dạng thứ nhất với trường hợp bằng nhau thứ nhất (c-c-c) của hai tam giác.
Khác nhau:
Giống:
- Ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia.
- Ba cạnh của tam giác này bằng ba cạnh của tam giác kia.
Trường hợp bằng nhau thứ nhất: (c.c.c)
kim tự tháp ở ai cập
Ta-let (624 - 547:TCN)
có thể em chưa biết
Đỳng
Sai
Phát biểu sau đúng hay sai ?
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó đồng dạng ?
0
1
2
3
4
5
6
7
8
9
10
C. 1dm, 2dm, 2dm v 1dm, 1dm, 0.5dm.
B. 3cm, 4cm, 6cm v 9cm, 15cm, 18cm.
A. 4cm, 5cm, 6cm v 8mm, 10mm, 12mm.
Hai tam giác mà các cạnh có độ dài như sau thì đồng dạng với nhau:
Kết quả nào sau đây sai ?
0
1
2
3
4
5
6
7
8
9
10
CÔNG VIỆC VỀ NHÀ
+ Học thuộc định lý về trường hợp đồng dạng thứ nhất của hai tam giác.
+ Hoàn thành các bài tập giao trong bài học.
+ Làm các bài tập 29;30; 31 trang 75 SGK.
+ Chuẩn bị bài "Trường hợp đồng dạng thứ hai": làm bài tập ?1 SGK trang 75.
xin chân thành cảm ơn
các thầy cô giáo
và các EM học sinh
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Ninh Thi Kim Dung
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)