Chương II. §6. Diện tích đa giác

Chia sẻ bởi Nguyễn Nam Khanh | Ngày 04/05/2019 | 54

Chia sẻ tài liệu: Chương II. §6. Diện tích đa giác thuộc Hình học 8

Nội dung tài liệu:

Bài 6 : Diện tích đa giác
1. Cách tính diện tích cuả một đa giác bất kỳ
SABCDE = SABC + SACD +SADE
SABCDE = SBMN – ( SAME + SCDN )
S = S1 + S2 + S3 + S4 + S5
Tóm lại : Để tính diện tích một đa giác bất kỳ :
Cách 1: Chia đa giác thành những tam giác
(hoặc tứ giác) đã có công thức tính diện tích
Cách 2: Tạo ra một tam giác ( hoặc tứ giác đã
có công thức tính diện tích ) chứa đa giác đó.
Do đó việc tính diện tích đa giác bất kỳ
thường quy về việc tính diện tích các
tam giác , hình thang , HCN, hình vuông..
Bài 6 : Diện tích đa giác
1. Cách tính diện tích của một đa giác bất kỳ
C1: Chia đa giác thành những tam giác hoặc tứ giác đã có công thức tính S
C2 :Tạo ra một tam giác ( hoặc tứ giác đã có công thức tính diện tích ) chứa đa giác đó
Ví dụ: Thực hiện các phép vẽ và đo cần thiết để tính diện tích hình ABCDEGHI ( H: 150 )
Giải
* Nối AH,CG. Chia đa giác thành 3 hình : Hình thang vuông CDEG, Hình chữ nhật ABGH và tam giác AIH.
Bằng phép đo ta được:
CD = ; DE = ;CG =
AB = ;AH = ;IK =
SABCDEGHI = SCDEG+ SABGH +SAIH
= 8 + 21 + 10,5 = 39,5 cm2
2 cm
3 cm
5 cm
3 cm
7 cm
3 cm
SABGH = 3.7 = 21 cm2
C
Các nhóm hoạt động tìm cách cách chia hợp lý khác ? ( 3 phút )
Bài 6 : Diện tích đa giác
1. Cách tính diện tích của một đa giác bất kỳ
2/ Ví dụ :
SĐa giác đã cho = SMNPQ - ( S1 + S2 + S3 + S4 )
Bài 6 : Diện tích đa giác
1. Cách tính diện tích của một đa giác bất kỳ
2/ Ví dụ :
Diện tích con đường hình bình hành là :
Diện tích đám đất hình chữ nhật ABCD là:
Diện tích phần còn lại của đám đất là :
SEBGF = FG.BC = 50 .120 = 6000 m2
SABCD = AB.BC = 150 .120 = 18000 m2
18000 - 6000 = 12000 m2
Giải
Câu 1. Tính tỉ số diện tích giữa phần con đường và đám đất hình chữ nhật
Hướng giảI + áp dụng định lí Pi Ta Go trong tam giác vuông BCG tính BG
+Từ công thức SEBGF = EH . GB suy ra
EH = SEBGF : GB
6000 m2

1/ Để tính diện tích một đa giác bất kỳ :
Cách 1: Chia đa giác thành những tam giác
(hoặc tứ giác) đã có công thức tính diện tích
Cách 2: Tạo ra một tam giác ( hoặc tứ giác đã
có công thức tính diện tích ) chứa đa giác đó.
2/ Biết vận dụng kiến thức đã học vào thực tế cuộc sống
Việc tính diện tích đa giác bất kỳ
thường quy về việc tính diện tích các
tam giác , hình thang , HCN , hình vuông ..
Bài 6 : Diện tích đa giác
1. Cách tính diện tích của một đa giác bất kỳ
2/ Ví dụ :
Kiến thức cần nhớ
Hướng dẫn về nhà :
Xem lại những bài tập đã chữa
Làm bài tập số : 37 ; 39 ; 40 SGK / 130 ,131
Làm bài tập số : 47 ; 48; 49 SBT trang 131
* Xem trước bài : Định lý Ta lét trong tam giác
Shồ nước = SADGI - ( S1 + S2 + S3 + S4 +S5 )
B
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Nam Khanh
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)