Chương II. §2. Hàm số bậc nhất
Chia sẻ bởi Nguyễn Thanh Tùng |
Ngày 07/05/2019 |
371
Chia sẻ tài liệu: Chương II. §2. Hàm số bậc nhất thuộc Đại số 9
Nội dung tài liệu:
Đại số 9 - Tiết 20
Giáo viên: Nguyễn Thanh Tùng
CHÀO MỪNG CÁC THẦY CÔ VỀ DỰ GIỜ LỚP 9A
Bài 2: HÀM SỐ BẬC NHẤT
Kiểm tra bài cũ:
2) Điền vào chỗ trống trong các câu sau để được câu đúng.
Cho hàm số y = f(x) xác định với mọi x thuộc R.
với x1, x2 bất kì thuộc R.
a) Nếu x1b) Nếu x1 f(x2 ) thì hàm số y=f(x) …................... trên R.
đồng biến
nghịch biến
1) Nêu khái niệm về hàm số? Hãy cho ví dụ về hàm số được cho bởi công thức?
Bài toán: Một xe ô tô chở khách đi từ bến xe phía nam Hà Nội vào Huế với vận tốc trung bình 50km/h. Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu kilômét? Biết rằng bến xe phía nam cách trung tâm Hà Nội 8km.
Trung tâm Hà Nội
Bến xe
Huế
8km
50 km/h
Hãy điền vào chỗ trống (... ) cho đúng.
Sau 1 giờ ôtô đi được : …….....
Sau t giờ ôtô đi được : ……......
Sau t giờ ô tô cách trung tâm Hà Nội là s =..........
?1
Trung tâm Hà Nội
Bến xe
Huế
8km
Tính các giá trị của s khi cho t lần lượt các giá trị 1 giờ, 2 giờ, 3 giờ, 4 giờ,... rồi giải thích tại sao đại lượng s là hàm số của t?
?2
58 km
108 km
208 km
158 km
50 km/h
50t (km)
50 (km)
50t+8 (km)
Ta nói s là hàm số của t vì:
s phụ thuộc vào t
ứng với mỗi giá trị của t chỉ có một giá trị tương ứng của s
s = 50t+8
Vì sao nói s là hàm số của t?
s
Định nghĩa: Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b
trong đó a, b là các số cho trước và a
y
b
a
x
=
50
t
+
8
Chú ý: Khi b = 0, hàm số có dạng y = ax
BÀI TẬP : Trong các hàm số sau hàm số nào là hàm số bậc nhất? Hãy xác định các hệ số a, b của chúng.
(nếu m ≠ 1)
3
2
-5
-4
-0,5
0
m - 1
3
- Hàm số y = -3x + 1 luôn xác định với mọi giá trị của x thuộc R vì biểu thức -3x + 1 luôn xác định với mọi giá trị của x thuộc R.
Ví dụ: Xét hàm số y = f(x) = -3x + 1
- Khi cho biến x lấy hai giá trị bất kì x1, x2 sao cho x1 < x2 hay x2 – x1 > 0 ta có:
f(x2) – f(x1) = (-3x2 + 1) - (-3x1 + 1)
= -3(x2 – x1) < 0 hay f(x1) > f(x2)
Vậy hàm số y = -3x + 1 là hàm số nghịch biến trên R.
?3
Cho hàm số bậc nhất y = f(x) = 3x + 1
Cho x hai giá trị bất kì x1, x2, sao cho x1 < x2. Hãy chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đồng biến trên R
- Hàm số y = 3x + 1 luôn xác định với mọi giá trị của x thuộc R vì biểu thức 3x + 1 luôn xác định với mọi giá trị của x thuộc R.
?3. Xét hàm số y = f(x) = 3x + 1
- Khi cho biến x lấy hai giá trị bất kì x1, x2 sao cho x1 < x2 hay x2 – x1 > 0 ta có:
f(x2) – f(x1) = (3x2 + 1) - (3x1 + 1)
= 3(x2 – x1) > 0 hay f(x1) < f(x2)
Vậy hàm số y = 3x + 1 là hàm số đồng biến trên R.
+ Hai hàm số bậc nhất:
y = 3x + 1và y = -3x + 1
luôn xác định với mọi giá trị của x thuộc R.
+ Hàm số y = 3x + 1 đồng biến trên R
+ Hàm số y = -3x + 1 nghịch biến trên R
Tổng quát:
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R và có tính chất sau:
Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a < 0
?4
Cho ví dụ về hàm số bậc nhất trong các trường hợp sau:
a) Hàm số đồng biến
b) Hàm số nghịch biến.
Trong các hàm số sau, hàm số nào là hàm số bậc nhất? Hãy xác định hệ số a, b của chúng và xét xem hàm số bậc nhất nào đồng biến, nghịch biến.
1
2
-3
-1
-5
0
1
Cho hàm số bậc nhất y = (m - 2)x + 3.
Tìm các giá trị của m để hàm số:
a) Đồng biến;
b) Nghịch biến.
Bài tập 9 (SGK/48)
Sơ đồ tư duy
HƯỚNG dÉn häc ë nhµ:
- Học định nghĩa, tính chất của hàm số bậc nhất.
- Xem lại cách biểu diễn tọa độ một điểm trên mặt phẳng tọa độ.
- BTVN: 10,11,13,14 SGK- 48
- D?c tru?c bi "D? th? hm s? c?a hm s? b?c nh?t"
CẢM ƠN CÁC THẦY CÔ VÀ CÁC EM
Giáo viên: Nguyễn Thanh Tùng
CHÀO MỪNG CÁC THẦY CÔ VỀ DỰ GIỜ LỚP 9A
Bài 2: HÀM SỐ BẬC NHẤT
Kiểm tra bài cũ:
2) Điền vào chỗ trống trong các câu sau để được câu đúng.
Cho hàm số y = f(x) xác định với mọi x thuộc R.
với x1, x2 bất kì thuộc R.
a) Nếu x1
đồng biến
nghịch biến
1) Nêu khái niệm về hàm số? Hãy cho ví dụ về hàm số được cho bởi công thức?
Bài toán: Một xe ô tô chở khách đi từ bến xe phía nam Hà Nội vào Huế với vận tốc trung bình 50km/h. Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu kilômét? Biết rằng bến xe phía nam cách trung tâm Hà Nội 8km.
Trung tâm Hà Nội
Bến xe
Huế
8km
50 km/h
Hãy điền vào chỗ trống (... ) cho đúng.
Sau 1 giờ ôtô đi được : …….....
Sau t giờ ôtô đi được : ……......
Sau t giờ ô tô cách trung tâm Hà Nội là s =..........
?1
Trung tâm Hà Nội
Bến xe
Huế
8km
Tính các giá trị của s khi cho t lần lượt các giá trị 1 giờ, 2 giờ, 3 giờ, 4 giờ,... rồi giải thích tại sao đại lượng s là hàm số của t?
?2
58 km
108 km
208 km
158 km
50 km/h
50t (km)
50 (km)
50t+8 (km)
Ta nói s là hàm số của t vì:
s phụ thuộc vào t
ứng với mỗi giá trị của t chỉ có một giá trị tương ứng của s
s = 50t+8
Vì sao nói s là hàm số của t?
s
Định nghĩa: Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b
trong đó a, b là các số cho trước và a
y
b
a
x
=
50
t
+
8
Chú ý: Khi b = 0, hàm số có dạng y = ax
BÀI TẬP : Trong các hàm số sau hàm số nào là hàm số bậc nhất? Hãy xác định các hệ số a, b của chúng.
(nếu m ≠ 1)
3
2
-5
-4
-0,5
0
m - 1
3
- Hàm số y = -3x + 1 luôn xác định với mọi giá trị của x thuộc R vì biểu thức -3x + 1 luôn xác định với mọi giá trị của x thuộc R.
Ví dụ: Xét hàm số y = f(x) = -3x + 1
- Khi cho biến x lấy hai giá trị bất kì x1, x2 sao cho x1 < x2 hay x2 – x1 > 0 ta có:
f(x2) – f(x1) = (-3x2 + 1) - (-3x1 + 1)
= -3(x2 – x1) < 0 hay f(x1) > f(x2)
Vậy hàm số y = -3x + 1 là hàm số nghịch biến trên R.
?3
Cho hàm số bậc nhất y = f(x) = 3x + 1
Cho x hai giá trị bất kì x1, x2, sao cho x1 < x2. Hãy chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đồng biến trên R
- Hàm số y = 3x + 1 luôn xác định với mọi giá trị của x thuộc R vì biểu thức 3x + 1 luôn xác định với mọi giá trị của x thuộc R.
?3. Xét hàm số y = f(x) = 3x + 1
- Khi cho biến x lấy hai giá trị bất kì x1, x2 sao cho x1 < x2 hay x2 – x1 > 0 ta có:
f(x2) – f(x1) = (3x2 + 1) - (3x1 + 1)
= 3(x2 – x1) > 0 hay f(x1) < f(x2)
Vậy hàm số y = 3x + 1 là hàm số đồng biến trên R.
+ Hai hàm số bậc nhất:
y = 3x + 1và y = -3x + 1
luôn xác định với mọi giá trị của x thuộc R.
+ Hàm số y = 3x + 1 đồng biến trên R
+ Hàm số y = -3x + 1 nghịch biến trên R
Tổng quát:
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R và có tính chất sau:
Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a < 0
?4
Cho ví dụ về hàm số bậc nhất trong các trường hợp sau:
a) Hàm số đồng biến
b) Hàm số nghịch biến.
Trong các hàm số sau, hàm số nào là hàm số bậc nhất? Hãy xác định hệ số a, b của chúng và xét xem hàm số bậc nhất nào đồng biến, nghịch biến.
1
2
-3
-1
-5
0
1
Cho hàm số bậc nhất y = (m - 2)x + 3.
Tìm các giá trị của m để hàm số:
a) Đồng biến;
b) Nghịch biến.
Bài tập 9 (SGK/48)
Sơ đồ tư duy
HƯỚNG dÉn häc ë nhµ:
- Học định nghĩa, tính chất của hàm số bậc nhất.
- Xem lại cách biểu diễn tọa độ một điểm trên mặt phẳng tọa độ.
- BTVN: 10,11,13,14 SGK- 48
- D?c tru?c bi "D? th? hm s? c?a hm s? b?c nh?t"
CẢM ƠN CÁC THẦY CÔ VÀ CÁC EM
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thanh Tùng
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)