Chương II. §2. Hàm số bậc nhất
Chia sẻ bởi Huỳnh Thị Mộng Thu |
Ngày 05/05/2019 |
41
Chia sẻ tài liệu: Chương II. §2. Hàm số bậc nhất thuộc Đại số 9
Nội dung tài liệu:
KIỂM TRA BÀI CŨ
Câu hỏi 1: Khi nào y được gọi là hàm số của x ( x là biến số )?
Trả lời: y được gọi là hàm số của x khi:
+ Đại lượng y phụ thuộc vào đại lượng x thay đổi.
+ Với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y.
Câu hỏi 2: Hàm số y = f(x) đồng biến, nghịch biến trên R khi nào?
Trả lời:
+ Nếu giá trị của x tăng mà giá trị tương ứng của f(x) cũng tăng thì hàm số y = f(x) được gọi là đồng biến trên R.
+ Nếu giá trị của x tăng mà giá trị tương ứng của f(x) lại giảm thì hàm số y = f(x) được gọi là nghịch biến trên R.
KIỂM TRA BÀI CŨ
8
6
5
3
2
1
0
-25
-17
-13
-5
-1
3
7
Câu hỏi 3: Hãy điền các giá trị thích hợp vào bảng và cho biết các hàm số sau đồng biến hay nghịch biến
BÀI 2_TIẾT 21
HÀM SỐ BẬC NHẤT
Giáo viên thực hiện: Trần Thị Thủy
1. Khái niệm về hàm số bậc nhất
Tiết 21: Hàm số bậc nhất
a. Bài toán:
Một xe ô tô chở khách đi từ bến xe Phía nam Hà Nội vào Huế với vận tốc trung bình 50km/h. Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu kilômét? Biết rằng bến xe Phía nam cách trung tâm Hà Nội 8km.
Trung tâm Hà Nội Bến xe Huế
8km
?1 Hãy điền vào chỗ trống (…) cho đúng.
Sau 1 giờ, ô tô đi được:
Sau t giờ, ô tô đi được:
Sau t giờ, ô tô cách TT Hà Nội là: s =
50 (km)
50.t (km)
50.t + 8 (km)
?2 Tính các giá trị tương ứng của s khi cho t lần lượt lấy các giá trị 1 giờ; 2 giờ; 3 giờ; 4 giờ; …
58 (km)
108 (km)
158 (km)
208 (km)
Hãy giải thích vì sao s là hàm số của t?
Vì:
+ s phụ thuộc vào t.
+ Ứng với mỗi giá trị của t chỉ có một giá trị tương ứng của s. Do đó s là hàm số của t.
1. Khái niệm về hàm số bậc nhất
s = 50.t + 8
y
x
a
(a ≠ 0)
b
1. Khái niệm về hàm số bậc nhất
ĐỊNH NGHĨA
Hàm số bậc nhất là hàm số được cho bởi công thức:
y = ax + b
trong đó a, b là các số cho trước và a ≠ 0
Chú ý: Khi b = 0, hàm số có dạng
y = ax (đã học ở lớp 7)
BÀI TẬP : Trong các hàm số sau hàm số nào là hàm số bậc nhất? . Hãy xác định các hệ số a, b của chúng.
(nếu m ≠ 0)
3
2
-5
4
0,5
0
m
3
2. Tính chất:
Ví dụ 1: Xét hàm số y = f(x) = -3x +1
Hàm số y = f(x) = -3x + 1 xác định với mọi x thuộc R
lấy x1, x2 thuộc R sao cho x1< x2 hay x2- x1>0
Xét f(x2 ) - f (x1) = (-3x2 + 1) – (-3x1 + 1) = -3x2 + 3x = -3(x2 – x1) < 0
hay f(x2 ) < f (x1) hay f (x1) > f(x2 )
Vậy hàm số y = -3x + 1 nghịch biến trên R.
?3. Cho hàm số bậc nhất y = 3x + 1
Cho x hai giá trị bất kì x1, x2 sao cho x1< x2 . Hãy chứng minh
f(x1) < f(x2 ) rồi rút ra kết luận hàm số đồng biến trên R
Chứng minh:
Hàm số y = f(x) = 3x + 1 xác định với mọi x thuộc R
lấy x1, x2 thuộc R sao cho x1< x2 hay x2- x1>0
Xét f(x2 ) - f (x1) = (3x2 + 1) – (3x1 + 1) = 3x2 - 3x1 = 3(x2 - x1) > 0
hay f(x2 ) > f (x1) hay f (x1) < f(x2 )
Vậy hàm số y = 3x + 1 đồng biến trên R.
TỔNG QUÁT
Hàm số bậc nhất xác định với mọi giá trị của x thuộc R và
có tính chất sau :
a, Đồng biến trên R khi a >0
b, Nghịch biến trên R khi a < 0
Đồng biến
Nghịch biến
Đồng biến
Đồng biến khi m>0
Nghịch biến khi m<0
Bài tập: Cho hàm số sau y = (m-2)x +5. Tìm các giá trị của m để hàm số trên là :
a, Hàm số bậc nhất
b, Đồng biến
c, Nghịch biến
Trả lời:
a, Hàm số trên là hàm số bậc nhất khi : m-2≠ 0 m ≠2
b, Hàm số đồng biến khi m-2 >0 m > 2
c, Hàm số nghich biến khi m-2 < 0 m < 2
VỀ NHÀ
+ Nắm được: Khái niệm hàm số bậc nhất,
tính đồng biến nghịch biến của hàm số bậc nhất.
+ Làm bài tập 8,9,10,11 - 48( Sgk)
BÀI HỌC KẾT THÚC
Xin chân thành cám ơn quý thầy cô và các em tham dự tiết học
Giáo viên thực hiện: Trần Thị Thủy
Câu hỏi 1: Khi nào y được gọi là hàm số của x ( x là biến số )?
Trả lời: y được gọi là hàm số của x khi:
+ Đại lượng y phụ thuộc vào đại lượng x thay đổi.
+ Với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y.
Câu hỏi 2: Hàm số y = f(x) đồng biến, nghịch biến trên R khi nào?
Trả lời:
+ Nếu giá trị của x tăng mà giá trị tương ứng của f(x) cũng tăng thì hàm số y = f(x) được gọi là đồng biến trên R.
+ Nếu giá trị của x tăng mà giá trị tương ứng của f(x) lại giảm thì hàm số y = f(x) được gọi là nghịch biến trên R.
KIỂM TRA BÀI CŨ
8
6
5
3
2
1
0
-25
-17
-13
-5
-1
3
7
Câu hỏi 3: Hãy điền các giá trị thích hợp vào bảng và cho biết các hàm số sau đồng biến hay nghịch biến
BÀI 2_TIẾT 21
HÀM SỐ BẬC NHẤT
Giáo viên thực hiện: Trần Thị Thủy
1. Khái niệm về hàm số bậc nhất
Tiết 21: Hàm số bậc nhất
a. Bài toán:
Một xe ô tô chở khách đi từ bến xe Phía nam Hà Nội vào Huế với vận tốc trung bình 50km/h. Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu kilômét? Biết rằng bến xe Phía nam cách trung tâm Hà Nội 8km.
Trung tâm Hà Nội Bến xe Huế
8km
?1 Hãy điền vào chỗ trống (…) cho đúng.
Sau 1 giờ, ô tô đi được:
Sau t giờ, ô tô đi được:
Sau t giờ, ô tô cách TT Hà Nội là: s =
50 (km)
50.t (km)
50.t + 8 (km)
?2 Tính các giá trị tương ứng của s khi cho t lần lượt lấy các giá trị 1 giờ; 2 giờ; 3 giờ; 4 giờ; …
58 (km)
108 (km)
158 (km)
208 (km)
Hãy giải thích vì sao s là hàm số của t?
Vì:
+ s phụ thuộc vào t.
+ Ứng với mỗi giá trị của t chỉ có một giá trị tương ứng của s. Do đó s là hàm số của t.
1. Khái niệm về hàm số bậc nhất
s = 50.t + 8
y
x
a
(a ≠ 0)
b
1. Khái niệm về hàm số bậc nhất
ĐỊNH NGHĨA
Hàm số bậc nhất là hàm số được cho bởi công thức:
y = ax + b
trong đó a, b là các số cho trước và a ≠ 0
Chú ý: Khi b = 0, hàm số có dạng
y = ax (đã học ở lớp 7)
BÀI TẬP : Trong các hàm số sau hàm số nào là hàm số bậc nhất? . Hãy xác định các hệ số a, b của chúng.
(nếu m ≠ 0)
3
2
-5
4
0,5
0
m
3
2. Tính chất:
Ví dụ 1: Xét hàm số y = f(x) = -3x +1
Hàm số y = f(x) = -3x + 1 xác định với mọi x thuộc R
lấy x1, x2 thuộc R sao cho x1< x2 hay x2- x1>0
Xét f(x2 ) - f (x1) = (-3x2 + 1) – (-3x1 + 1) = -3x2 + 3x = -3(x2 – x1) < 0
hay f(x2 ) < f (x1) hay f (x1) > f(x2 )
Vậy hàm số y = -3x + 1 nghịch biến trên R.
?3. Cho hàm số bậc nhất y = 3x + 1
Cho x hai giá trị bất kì x1, x2 sao cho x1< x2 . Hãy chứng minh
f(x1) < f(x2 ) rồi rút ra kết luận hàm số đồng biến trên R
Chứng minh:
Hàm số y = f(x) = 3x + 1 xác định với mọi x thuộc R
lấy x1, x2 thuộc R sao cho x1< x2 hay x2- x1>0
Xét f(x2 ) - f (x1) = (3x2 + 1) – (3x1 + 1) = 3x2 - 3x1 = 3(x2 - x1) > 0
hay f(x2 ) > f (x1) hay f (x1) < f(x2 )
Vậy hàm số y = 3x + 1 đồng biến trên R.
TỔNG QUÁT
Hàm số bậc nhất xác định với mọi giá trị của x thuộc R và
có tính chất sau :
a, Đồng biến trên R khi a >0
b, Nghịch biến trên R khi a < 0
Đồng biến
Nghịch biến
Đồng biến
Đồng biến khi m>0
Nghịch biến khi m<0
Bài tập: Cho hàm số sau y = (m-2)x +5. Tìm các giá trị của m để hàm số trên là :
a, Hàm số bậc nhất
b, Đồng biến
c, Nghịch biến
Trả lời:
a, Hàm số trên là hàm số bậc nhất khi : m-2≠ 0 m ≠2
b, Hàm số đồng biến khi m-2 >0 m > 2
c, Hàm số nghich biến khi m-2 < 0 m < 2
VỀ NHÀ
+ Nắm được: Khái niệm hàm số bậc nhất,
tính đồng biến nghịch biến của hàm số bậc nhất.
+ Làm bài tập 8,9,10,11 - 48( Sgk)
BÀI HỌC KẾT THÚC
Xin chân thành cám ơn quý thầy cô và các em tham dự tiết học
Giáo viên thực hiện: Trần Thị Thủy
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Huỳnh Thị Mộng Thu
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)