Chương II. §2. Hàm số bậc nhất

Chia sẻ bởi Phan Khắc Hải | Ngày 05/05/2019 | 45

Chia sẻ tài liệu: Chương II. §2. Hàm số bậc nhất thuộc Đại số 9

Nội dung tài liệu:

Giáo viên thực hiện: Cao Hoàng Thành
Mọi thành công một phần do rèn luyện mà nên.
KIỂM TRA BÀI CŨ
Câu hỏi 1: Khi nào y được gọi là hàm số của x ( x là biến số )?

Trả lời: y được gọi là hàm số của x khi:
+ Đại lượng y phụ thuộc vào đại lượng x thay đổi.
+ Với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y.

Câu hỏi 2: Hàm số y = f(x) đồng biến, nghịch biến trên R khi nào?

Trả lời:
+ Nếu giá trị của x tăng mà giá trị tương ứng của f(x) cũng tăng thì hàm số y = f(x) được gọi là đồng biến trên R.
+ Nếu giá trị của x tăng mà giá trị tương ứng của f(x) lại giảm thì hàm số y = f(x) được gọi là nghịch biến trên R.


BÀI 2_TIẾT 21
HÀM SỐ BẬC NHẤT



Giáo viên thực hiện: Cao Hoàng Thành
1. Khái niệm về hàm số bậc nhất
Tiết 21: Hàm số bậc nhất
a. Bài toán:
Một xe ô tô chở khách đi từ bến xe Phía nam Hà Nội vào Huế với vận tốc trung bình 50km/h. Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu kilômét? Biết rằng bến xe Phía nam cách trung tâm Hà Nội 8km.

8km
?1 Hãy điền vào chỗ trống (…) cho đúng.
Sau 1 giờ, ô tô đi được:
Sau t giờ, ô tô đi được:
Sau t giờ, ô tô cách TT Hà Nội là: s =
50 (km)
50.t (km)
50.t + 8 (km)
TT Hà Nội
TT Hà Nội
Bến xe
Huế
?2 Tính các giá trị tương ứng của s khi cho t lần lượt lấy các giá trị 1 giờ; 2 giờ; 3 giờ; 4 giờ; …
58 (km)
108 (km)
158 (km)
208 (km)
Hãy giải thích vì sao s là hàm số của t?
Vì:
+ s phụ thuộc vào t.
+ Ứng với mỗi giá trị của t chỉ có một giá trị tương ứng của s. Do đó s là hàm số của t.
1. Khái niệm về hàm số bậc nhất
s = 50.t + 8
y
x
a
(a ≠ 0)
b
1. Khái niệm về hàm số bậc nhất
ĐỊNH NGHĨA
Hàm số bậc nhất là hàm số được cho bởi công thức:
y = ax + b
trong đó a, b là các số cho trước và a ≠ 0
Chú ý: Khi b = 0, hàm số có dạng
y = ax (đã học ở lớp 7)
BÀI TẬP : Trong các hàm số sau hàm số nào là hàm số bậc nhất? . Hãy xác định các hệ số a, b của chúng.









(nếu m ≠ 0)

3

2

-5

4

0,5

0

m

3

2. Tính chất:

Ví dụ 1: Xét hàm số y = f(x) = -3x +1

Hàm số y = f(x) = -3x + 1 xác định với mọi x thuộc R

lấy x1, x2 thuộc R sao cho x1< x2 hay x1- x2 < 0


Xét f(x1 ) - f (x2) = (-3x1 + 1) – (-3x2 + 1) = -3x1 + 3x2 = -3(x1- x2) > 0


=> f (x1) > f(x2 )

Vậy hàm số y = -3x + 1 nghịch biến trên R.
?3. Cho hàm số bậc nhất y = 3x + 1
Cho x hai giá trị bất kì x1, x2 sao cho x1< x2 . Hãy chứng minh
f(x1) < f(x2 ) rồi rút ra kết luận hàm số đồng biến trên R

Chứng minh:
Hàm số y = f(x) = 3x + 1 xác định với mọi x thuộc R
lấy x1, x2 thuộc R sao cho x1< x2 hay x1- x2 < 0

Xét f(x1 ) - f (x2) = (3x1 + 1) – (3x2 + 1) = 3x1 - 3x2 = 3(x1 - x2) < 0
=> f (x1) < f(x2 )
Vậy hàm số y = 3x + 1 đồng biến trên R.


TỔNG QUÁT
Hàm số bậc nhất xác định với mọi giá trị của x thuộc R và
có tính chất sau :
a, Đồng biến trên R khi a >0
b, Nghịch biến trên R khi a < 0
Đồng biến

Nghịch biến

Đồng biến

Đồng biến khi m>0

Nghịch biến khi m<0

Bài tập: Cho hàm số sau y = (m-2)x +5. Tìm các giá trị của m để hàm số trên là :
a, Hàm số bậc nhất
b, Đồng biến
c, Nghịch biến
Trả lời:
a, Hàm số trên là hàm số bậc nhất khi : m-2≠ 0  m ≠2
Vậy với m ≠2 thì hàm số y = (m-2)x +5 là HS bậc nhất
b, Hàm số đồng biến khi m-2 >0  m > 2
Vậy với m > 2 thì hàm số y = (m-2)x +5 đồng biến trên R
c, Hàm số nghịch biến khi m-2 < 0  m < 2
Vậy với m < 2 thì hàm số y = (m-2)x +5 nghịch biến trên R
VỀ NHÀ
+ Nắm được: Khái niệm hàm số bậc nhất,
tính đồng biến nghịch biến của hàm số bậc nhất.
+ Làm bài tập 8,9,10,11 - 48( Sgk)


BÀI HỌC KẾT THÚC
Xin chân thành cám ơn quý thầy cô và các em tham dự tiết học


Giáo viên thực hiện: Cao Hoàng Thành
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phan Khắc Hải
Dung lượng: | Lượt tài: 2
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)