Chương II. §2. Hàm số bậc nhất

Chia sẻ bởi Phạm Thị Lệ Khương | Ngày 05/05/2019 | 43

Chia sẻ tài liệu: Chương II. §2. Hàm số bậc nhất thuộc Đại số 9

Nội dung tài liệu:

Giáo án môn ĐạI Số 9


GV:Phạm Thị Lệ Khương
Trường T.H.C.S Nguyễn Huệ
Câu 2 : Điền vào chỗ (…) cho đúng
Cho hàm số y = f(x) xác định với mọi x thuộc R.
Với mọi x1, x2 thuộc R
Nếu x1< x2 mà f(x1) < f(x2) thì hàm số y = f(x) …………….trên R
Nếu x1 < x2 mà f(x1) > f(x2) thì hàm số y = f(x) ……………trên R
đồng biến
nghịch biến
K
r
i

m
T
a
Câu 1: Nêu khái niệm hàm số
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x, ta luôn xác định được chỉ một một giá trị tương ứng của y thì y gọi là hàm số của x, và x gọi là biến số.
1.KHÁI NIỆM VỀ HÀM SỐ BẬC NHẤT :
Một xe ôtô chở khách đi từ bến xe phía nam Hà Nội vào Huế với vận tốc trung bình 50 km/h. Hỏi sau t giờ xe ôtô đó cách trung tâm Hà Nội bao nhiêu km? Biết rằng bến xe phía nam cách trung tâm Hà Nội 8 km.
a) Bài toán
Hàm số bậc nhất
TT Hà Nội
Bến xe
Huế
Sau 1 giờ
8 km
50(km)
Sau t giờ
50.t (km)
Sau t giờ, ôtô cách trung tâm Hà Nội là: s = …………
50.t + 8 ( km)
Vận tốc trung bình : v = 50 km/h
58
108
158
208
….
Điền số thích hợp vào ô trống
Dựa vào bảng hãy giải thích tại sao s là hàm số của t ?
+ s phụ thuộc t
+ Với mỗi giá trị t chỉ có một giá trị tương ứng của s
s là hàm số của t vì:
y
x
s
= 50.
t
+ 8
Ví dụ:
là một hàm số bậc nhất
b) Định nghĩa:
y = a.x + b
Hàm số bậc nhất là hàm số được cho bởi công thức
1.KHÁI NIỆM VỀ HÀM SỐ BẬC NHẤT :
a) Bài toán(sgk)
Lưu ý: Khi b = 0, hàm số có dạng y = a.x (a ≠ 0)
trong đó a, b là các số cho trước và a ≠ 0
(a ≠ 0)
Hàm số bậc nhất
Các hàm số sau đây có phải là hàm số bậc nhất không ? Tại sao?
b) y = 1 – 5x
f) y = 0.x + 7
Các hàm số bậc nhất:
e) y = mx + 2
e) y = mx + 2
f) y = 0.x + 7
f) y = 0.x + 7
y
x
= 50.
+ 8
Ví dụ:
là một hàm số bậc nhất
b) Định nghĩa:
1.KHÁI NIỆM VỀ HÀM SỐ BẬC NHẤT :
a) Bài toán(sgk)
Lưu ý: khi b = 0, hàm số có dạng y = a.x (a ≠ 0)
2. TÍNH CHẤT:
y = a.x + b
Hàm số bậc nhất là hàm số được cho bởi công thức
trong đó a, b là các số cho trước và a ≠ 0
(a ≠ 0)
Hàm số bậc nhất
BT: Cho 2 hàm số y = f(x) = -3x + 1 (1)
y = f(x) = 3x + 1 (2)
Giải
Vì x1 < x2 suy ra f(x1)> f(x2) nên hàm số y = -3x + 1 ngịch biến trên R
Gợi ý
Hãy chứng minh hàm số (1) nghịch biến trên R, hàm số (2) đồng biến trên R
Lấy x1, x2 R sao cho x1< x2 =>

Hãy cho hai giá trị bất kỳ
x1 ; x2 R sao cho x1< x2
Chứng minh rằng : f(x1) > f(x2) (1)
f(x1) < f(x2) (2)
Giải
Lấy x1; x2 trên tập hợp R, sao cho x1< x2
f(x1) = 3.x1 + 1
f(x2) = 3.x2 + 1
Vì x1 < x2 nên 3x1 < 3x2  3x1+1 < 3x2+1
 f(x1) < f(x2)
Vậy hàm số y = f(x) = 3x +1 đồng biến trên R
Tổng quát:
Hàm số y = ax + b xác định với mọi giá trị của x thuộc R và có tính
chất sau:
a) Đồng biến trên R, khi a > 0.
b) Nghịch biến trên R, khi a < 0.
y
x
= 50.
+ 8
Ví dụ:
là một hàm số bậc nhất
b) Định nghĩa:
y = a.x + b (a ≠ 0)
Hàm số bậc nhất là hàm số có dạng
1.KHÁI NIỆM VỀ HÀM SỐ BẬC NHẤT :
a) Bài toán(sgk)
Lưu ý: khi b = 0, hàm số có dạng y = a.x (a ≠ 0)
2. TÍNH CHẤT:
Tổng quát: ( học thuộc ở sgk trang 47)
Hàm số bậc nhất
b) y = 1 – 5x
BT: Xét xem trong các hàm số sau hàm số nào đồng biến, hàm số nào nghịch biến? Tại sao?
Trả lời
Hàm số đồng biến trên R vì a = > 0
Hàm số y = 1 – 5x nghịch biến trên R vì a = -5 < 0
BT ?4 Cho ví dụ về hàm số bậc nhất trong các trường hợp sau:
a) Hàm số đồng biến.
b) Hàm số nghịch biến.
BT 9(sgk) : Cho hàm số bậc nhất y = (m – 2)x + 3. Tìm các giá trị của m để hàm số:
a) Đồng biến.
b) Nghịch biến.
Giải:
Hàm số trên đồng biến khi m – 2 > 0 => m > 2
b) Hàm số trên nghịch biến khi m – 2 < 0 => m < 2
20cm
30cm
x
x
30-x (cm)
20-x (cm)
Hướng dẫn bài tập 10/tr 48
Một hình chữ nhật có kích thước là 20 cm và 30 cm. Người ta bớt mỗi kích thước của hình đó đi x (cm) được hình chữ nhật mới có chu vi là y (cm). Hãy lập công thức tính y theo x.
Chu vi hình chữ nhật mới: y = ?
1
2
3
4
5
?
1
2
3
4
5
10
HÀNG DỌC
8
9
7
7
1
Đây là tính chất của hàm số y = 8 + 9x
Một trong những kiến thức quan trọng cần nắm trong tiết học này.
Từ còn thiếu trong câu :
Hình lập phương có độ dài cạnh x (m) thì …….. bằng x3 (m3)
Muốn đạt kết quả cao trong học tập thì mỗi người học sinh phải nhớ kỹ điều này
Đây là giá trị của hàm số y = f(x) = -2x +12 tại x = 1
Trò chơi ô chữ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phạm Thị Lệ Khương
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)