Chương II. §2. Hàm số bậc nhất

Chia sẻ bởi Nguyễn Thị Song Mai | Ngày 05/05/2019 | 46

Chia sẻ tài liệu: Chương II. §2. Hàm số bậc nhất thuộc Đại số 9

Nội dung tài liệu:

HÀM SỐ BẬC NHẤT
BÀI 2:
Cử nhân: Nguyễn Quang Tuynh
HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất.
Bài toán. (SGK)
Trung tâm
Hà nội
Bến xe
8km
Huế
50km/h
?1
Sau 1 giờ ôtô đi được …
Sau t giờ ôtô đi được …
Sau t giờ ôtô cách trung tâm Hà nội: S = …
50 km
50t km
50t + 8(km)
?2
Tính S khi t = 1; 2; 3; 4 …
Giải thích S là hàm số của t ?
58
108
158
208
S là hàm số của t vì:
- D?i lu?ng S ph? thu?c v�o d?i lu?ng t thay d?i.
- Mỗi t có một S tương ứng.
S = 50t + 8
y = ax + b
ĐỊNH NGHĨA (SGK)
Chú ý
y = ax + b
Khi b = 0 hàm số trở thành
y = ax
Khi a = 0 hàm số trở thành
y = b
(hàm hằng)
Trong các hàm số sau , hàm số nào là hàm số
bậc nhất ? Xác định hệ số a , b?
Đúng, cã a = -5 vµ b = 1
không là hàm số bậc nhất
Đúng, cã a = -0,5 vµ b = 0
không là hàm số bậc nhất
Đúng, cã a = vµ b =
không là hàm số bậc nhất
2. Tính chất.
y = ax + b
-14
-9
-4
1
6
11
16
21
26
16
11
6
1
-4
-9
-14
-19
-24
?3
Cho hàm số y = f(x) = 3x + 1 Cho x hai giá tị bất kì x1 ; x2 sao cho x1 < x2. Chứng minh f(x1) < f(x2). Từ đó suy ra hàm số đồng biến trên R.
y = f(x) = 3x + 1
Ta có:
f(x1) - f(x2)
=(3x1 + 1) - (3x2 + 1)
= 3(x1 - x2)
Theo đề bài x1 < x2
x1 - x2 < 0
3(x1 - x2) < 0
f(x1) - f(x2) < 0
f(x1) < f(x2)
Vậy hàm số đồng biến trên R.
- Nêu tính đồng biến, nghịch biến của hàm số y = ax + b ?
(SGK T 47)
?4
Cho ví dụ về hàm số bậc nhất trong các trường hợp sau.
a. Hàm số đồng biến.
b. Hàm số nghịch biến.
Khái niệm:
y = ax + b
Tính chất:
- a > 0, hàm số đồng biến trên R.
- a < 0, hàm số nghịch biến trên R.
Luyện tập
Bài 1.

Bài 2.
GIẢI
Để hàm số là bậc nhất thì:
m2 – 4m = 0
Vậy m = 4 thì hàm số là bậc nhất.
Về nhà.
Học :định nghĩa, tính chất , xem các dạng bài
tập đã làm.
Làm : 10, 11 , 13 (48 - SGK ).
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thị Song Mai
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)