Chương II. §2. Hàm số bậc nhất

Chia sẻ bởi Hoài Thanh | Ngày 05/05/2019 | 43

Chia sẻ tài liệu: Chương II. §2. Hàm số bậc nhất thuộc Đại số 9

Nội dung tài liệu:

Đại số 9 - Tiết 21
Giáo viên: Lª ViÕt Thanh
Đơn vị công tác:
Trường THCS Nam Giang
Kiểm tra bài cũ
2) Điền vào chỗ trống trong các câu sau để được câu đúng.
Cho hàm số y = f(x) xác định với mọi x thuộc R.
với x1, x2 bất kì thuộc R.
a) Nếu x1b) Nếu x1 f(x2 ) thì hàm số y=f(x) …................... trên R.
đồng biến
nghịch biến
1) Nêu khái niệm về hàm số? Hãy cho ví dụ về hàm số được cho bởi công thức?
Bài toán: Một xe ô tô chở khách đi từ bến xe Phía nam Hà Nội vào Huế với vận tốc trung bình 50km/h. Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu kilômét? Biết rằng bến xe Phía nam cách trung tâm Hà Nội 8km.
Trung tâm
Hà Nội
Bến xe
Huế
8km
50 km/h
Hãy điền vào chỗ trống (... ) cho đúng.
Sau 1 giờ ôtô đi được : …….....
Sau t giờ ôtô đi được : ……......
Sau t giờ ô tô cách trung tâm Hà Nội là ..........
?1
Trung tâm
Hà Nội
Bến xe
Huế
8km
Tính các giá trị của s khi cho t lần lượt các giá trị 1 giờ, 2 giờ, 3 giờ, 4 giờ,... rồi giải thích tại sao đại lượng s là hàm số của t?
?2
58
108
208
158
50 km/h
50t (km)
50 (km)
s = 50t+8 (km)
s
Định nghĩa: Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b
trong đó a, b là các số cho trước và a
y
b
a
x
=
50
t
+
8
Chú ý: Khi b = 0, hàm số có dạng y = ax


BÀI TẬP : Trong các hàm số sau hàm số nào là hàm số bậc nhất? . Hãy xác định các hệ số a, b của chúng.





(nếu m ≠ 1)
1
2
-5
4
0,5
0
m - 1
Tiết 21: Hàm số bậc nhất
3
1. Khái niệm về hàm số bậc nhất
ĐỊNH NGHĨA
y = ax + b (a ≠ 0)
- Hàm số y = -3x + 1 luôn xác định với mọi giá trị của x thuộc R vì biểu thức -3x + 1 luôn xác định với mọi giá trị của x thuộc R.
Ví dụ: Xét hàm số y = f(x) = -3x + 1
- Khi cho biến x lấy hai giá trị bất kì x1, x2 sao cho x1 < x2 hay x1 – x2 < 0 ta có:
f(x1) – f(x2) = (-3x1 + 1) - (-3x2 + 1)
= -3(x1 – x2) > 0 hay f(x1) > f(x2)
Vậy hàm số y = -3x + 1 là hàm số nghịch biến trên R.
?3
Cho hàm số bậc nhất y = f(x) = 3x + 1
Cho x hai giá trị bất kì x1, x2, sao cho x1 < x2. Hãy chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đồng biến trên R
- Hàm số y = 3x + 1 luôn xác định với mọi giá trị của x thuộc R vì biểu thức 3x + 1 luôn xác định với mọi giá trị của x thuộc R.
?3. Xét hàm số y = f(x) = 3x + 1
- Khi cho biến x lấy hai giá trị bất kì x1, x2 sao cho x1 < x2 hay x1 – x2 < 0 ta có:
f(x1) – f(x2) = (3x1 + 1) - (3x2 + 1)
= 3(x1 – x2) < 0 hay f(x1) < f(x2)
Vậy hàm số y = 3x + 1 là hàm số đồng biến trên R.
+ Hai hàm số bậc nhất:
y = 3x + 1và y = -3x + 1
luôn xác định với mọi giá trị của x thuộc R.
+ Hàm số y = 3x + 1 đồng biến trên R
+Hàm số y = -3x + 1 nghịch biến trên R
Tổng quát:
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R và có tính chất sau:
Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a < 0
?4
Cho ví dụ về hàm số bậc nhất trong các trường hợp sau:
a) Hàm số đồng biến
b) Hàm số nghịch biến.
Đồng biến
Nghịch biến
Đồng biến
Tiết 21: Hàm số bậc nhất
Đồng biến khi m>1
Nghịch biến khi m<1
y = ax + b (a ≠ 0)
2. Tính chất:
1. Khái niệm về hàm số bậc nhất
Cho hàm số bậc nhất y = (m - 2)x + 3.
Tìm các giá trị của m để hàm số:
a) Đồng biến;
b) Nghịch biến.
Bài tập 9 (SGK/48)
Hướng dẫn học sinh tự học ở nhà
Hiểu định nghĩa hàm số bậc nhất, tính chất của nó.
Làm bài tập 8, 10 SGK/48; 6, 8 SBT/57.
Hướng dẫn bài tập 8c:
Biến đổi biểu thức đưa về dạng tổng quát.
Hướng dẫn bài 10 SGK:
Chiều dài HCN là 30cm. Khi bớt
x(cm) chiều dài là 30 – x (cm)
Sau khi bớt x(cm) chiều rộng là
20 – x(cm)
Công thức tính chu vi p = (dài + rộng).2
* Đọc trước bài đồ thị hàm số y = ax + b (Chuẩn bị thước thẳng, bút chì để vẽ đồ thị)
20cm
30cm
x
x
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Hoài Thanh
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)