Chương II. §2. Hàm số bậc nhất
Chia sẻ bởi Cá Sấu Chúa |
Ngày 05/05/2019 |
44
Chia sẻ tài liệu: Chương II. §2. Hàm số bậc nhất thuộc Đại số 9
Nội dung tài liệu:
NHIỆT LIỆT CHÀO MỪNG CÁC THẦY CÔ GIÁO VÀ CÁC EM
ĐẾN DỰ GIỜ TIẾT HỌC HÔM NAY.
Năm học : 2013 - 2014
Giáo viên : Hứa Văn Duy
Trường: PT DT N?i Trỳ THCS Van Quan
Kiểm tra
1. Nêu định nghĩa hàm số? Cho ví dụ.
2. Điền vào chỗ (.....)
Cho hàm số y = f(x) xác định x R
Với mọi x1, x2 bất kỳ thuộc R
- Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số y = f(x) ................. trên R
- Nếu x1 < x2 mà ................. thì hàm số y = f(x) nghịch biến trên R
Kiểm tra
1. Nêu định nghĩa hàm số? Cho ví dụ.
2. Điền vào chỗ (.....)
Cho hàm số y = f(x) xác định x R
Với mọi x1, x2 bất kỳ thuộc R
- Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số y = f(x) ................. trên R
- Nếu x1 < x2 mà ................. thì hàm số y = f(x) nghịch biến trên R
đồng biến
f(x1) > f(x2)
* Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x, và x được gọi là biến số.
tiết 21: hàm số bậc nhất
1. Khái niệm về hàm số bậc nhất
Sau t giờ ô tô đi được .........
Sau t giờ ô tô cách TT Hà Nội s = ..........
? s = 50t + 8 là hàm số
b) Định nghĩa:
y = ax + b
50 (km)
50 t (km)
50t + 8 (km)
58
108
158
208
...
và a ? 0.
bậc nhất
8km
+ b
(a ? 0)
a
b
= a
S = t +
y
x
a) Bài toán: Một xe chở khách đi từ bến xe phía nam Hà Nội vào Huế với vận tốc . Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu km? Biết rằng bến xe phía nam cách trung tâm Hà Nội
50 km/h
a km/h (a>0)
8 km.
b km (b?0)
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (a ? 0) (đã học ở lớp 7)
a) Bài toán:
b) Định nghĩa:
Bài tập 1: a) Trong cỏc hm s? sau hm s? no l hm s? b?c nh?t?
y = 1 - 5x
? y = 3x - 4
2y = 6x - 8
2y = 6x - 8
y = (m - 1) x -2
(m ? 1)
1. Khái niệm về hàm số bậc nhất
tiết 21: hàm số bậc nhất
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (đã học ở lớp 7)
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
a) Bài toán:
b) Định nghĩa:
Bài tập 1: b) Trong cỏc hm s? b?c nh?t sau, xỏc d?nh cỏc h? s? a, b
y = 2 x
2y = 6x - 8
? y = 3x - 4
2y = 6x - 8
y = 1 - 5x
-5
1
0
3
-4
Dạng y = ax + b a ?0
y = (m - 1) x -2
(m ? 1)
m -1
- 2
a
b
1. Khái niệm về hàm số bậc nhất
tiết 21: hàm số bậc nhất
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (đã học ở lớp 7)
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
1. Khái niệm về hàm số bậc nhất
Chứng minh rằng hàm số
y = f(x) = - 3x + 1 nghịch biến trên R
Chứng minh
- Hàm số y = f(x) = - 3x + 1 xác định ?x ? R
- Lấy x1, x2 bất kỳ ? R sao cho
x1 < x2 ? x1 - x2 < 0
? f(x1) = - 3x1 + 1
f(x2) = - 3x2 + 1
? f(x1) -f(x2) = - 3x1 + 1 + 3x2 - 1
= - 3(x1 - x2)
Vì - 3 < 0 ; x1 - x2 < 0
? f(x1) - f(x2) > 0 ? f(x1) > f(x2)
?y = f(x) = - 3x + 1 nghịch biến trên R
2. tính chất
* VD1: Xét hàm số y = - 3x + 1
- Hàm số y = - 3x + 1 xác định ?x ? R
- Hàm số y = - 3x + 1 nghịch biến trên R
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
b) Định nghĩa:
a) Bài toán: SGK trang 46
tiết 21: hàm số bậc nhất
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (đã học ở lớp 7)
Cho hàm số y = f(x) xác định x R
Với mọi x1, x2 bất kỳ thuộc R
- Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số y = f(x) đồng biến trên R
- Nếu x1 < x2 mà f(x1) > f(x2) thì hàm số y = f(x) nghịch biến trên R
a) Bài toán:
Ví dụ 1: Xét hàm số y = f(x) = -3x + 1
Hàm số xác định với mọi x thuộc R.
Hàm số nghịch biến với mọi x thuộc R.
Ví dụ 2: Xét hàm số y = f(x) = 3x + 1
? Chứng minh hàm số y = f(x) = 3x + 1
đồng biến với mọi x thuộc R ?
Hoạt động nhóm
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01
stop
1. Khái niệm về hàm số bậc nhất
2. tính chất
tiết 21: hàm số bậc nhất
b) Định nghĩa:
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (đã học ở lớp 7)
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
1. Khái niệm về hàm số bậc nhất
* VD2: Xét hàm số y = 3x + 1
Hàm số y = 3x + 1 xác định ?x ? R
Hàm số y = 3x +1 đồng biến trên R
1
Có a = 3 > 0
Chứng minh hàm số
y = f(x) = 3x +1 đồng biến trên R.
Chứng minh
2. tính chất
* VD1: Xét hàm số y = -3x + 1
Hàm số y = - 3x + 1 xác định ?x ? R
Hàm số y = - 3x + 1 nghịch biến trên R
1
Có a = - 3 < 0
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
Chú ý: b = 0 hàm số có dạng y = ax (a ? 0)
b) Định nghĩa:
a) Bài toán: SGK trang 46
* Tính chất:
Hàm số bậc nhất y = ax + b xác định với mọi
giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên R khi a > 0
b) Nghịch biến trên R khi a < 0
- Hàm số y = f(x) = 3x + 1 xác định ?x ? R
- Lấy x1, x2 bất kỳ ? R sao cho
x1 < x2 ? x1 - x2 < 0
? f(x1) = 3x1 + 1
f(x2) = 3x2 + 1
? f(x1) -f(x2) = 3x1 + 1 - 3x2 - 1
= 3(x1 - x2)
Vì 3 > 0 ; x1 - x2 < 0
? f(x1) - f(x2) < 0 ? f(x1) < f(x2)
?y= f(x)= 3x +1 đồng biến trên R
-3
3
tiết 21: hàm số bậc nhất
a) Bài toán:
b) Định nghĩa:
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b (a ? 0) trong đó a, b là các số cho trước
Khi b = 0,
hàm số có dạng y = ax (a ? 0)
Chú ý:
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R
* Tổng quát:
và có tính chất sau:
a) Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a< 0
Bài tập 1: c) Trong cỏc hm s? b?c nh?t sau, hm s? no l d?ng bi?n, ngh?ch bi?n?
(m < 1)
(m > 1)
1. Khái niệm về hàm số bậc nhất
2. tính chất
tiết 21: hàm số bậc nhất
a) Bài toán:
b) Định nghĩa:
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b (a ? 0) trong đó a, b là các số cho trước
Khi b = 0,
hàm số có dạng y = ax (a ? 0)
Chú ý:
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R
* Tổng quát:
và có tính chất sau:
a) Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a< 0
Bài tập 2:
Cho hm s? b?c nh?t: y = (1 - 2m)x + 2.
Tỡm cỏc giỏ tr? c?a m d? hm s? :
D?ng bi?n
Ngh?ch bi?n
1. Khái niệm về hàm số bậc nhất
2. tính chất
Gi?i:
a) y = (1 - 2m)x + 2 đồng biến 1-2m > 0 m < 1/2
b) y = (1 - 2m)x + 2 nghịch biến 1-2m < 0 m > 1/2
tiết 21: hàm số bậc nhất
Em vui học tập
1
2
3
4
Ngô Bảo Châu sinh ngày 28 tháng 6 năm 1972 tại Hà Nội, là người Việt Nam đầu tiên giành 2 huy chương vàng Olympic Toán học Quốc tế.
Năm 2007, ông đồng thời làm việc tại Trường Đại học Paris XI, Orsay, Pháp và Viện nghiên cứu cao cấp Princeton, New Jersey, Hoa Kỳ. Trong năm 2008, ông công bố chứng minh Bổ đề cơ bản cho các đại số Lie hay còn gọi là Bổ đề cơ bản Langlands.
Với các công trình khoa học của mình, Giáo sư Ngô Bảo Châu được mời đọc báo cáo trong phiên họp toàn thể của Hội nghị toán học thế giới 2010 tổ chức ở Ấn Độ vào ngày 19 tháng 8 năm 2010. Tại lễ khai mạc, giáo sư đã được tặng thưởng Huy chương Fields.
Ông đã phát biểu khi nhận giải rằng "Đến một lúc nào đó, bạn làm toán vì bạn thích chứ không phải để chứng tỏ một cái gì nữa" hay vì đam mê giàu có hoặc sự nổi tiếng.
1. Hàm số nào sau đây không phải là hàm số bậc nhất ?
2- Hàm số bậc nhất y = (m – 2)x + 3 đồng biến khi
3- Với giá trị nào của k thì hàm số y = (k – 2)x + 3 nghịch biến?
4. Với giá trị nào của m thì hàm số là hàm số bậc nhất ?
a) Khái niệm:
Hàm số bậc nhất là hàm số được cho bởi công thức: y = ax + b
trong đó a, b là số cho trước và a ? 0
b) Chú ý: SGK/ 47
1. Khái niệm về hàm số bậc nhất:
2. Tính chất:
* TQ:
Hàm số bậc nhất y = ax + b xác định với
mọi giá trị của x thuộc R và có tính chất
sau:
Đồng biến trên R, khi a > 0.
b) Nghịch biến trên R, khi a < 0.
Hướng dẫn về nhà
- Nắm vững định nghĩa, tính chất của hàm số bậc nhất.
- Bài tập số 10; 11; 12 (SGK - Tr 48).
Bài tập số 6; 8 (SBT - Tr 57).
tiết 21: hàm số bậc nhất
BÀI GIẢNG ĐẾN ĐÂY KẾT THÚC
XIN CHÂN THÀNH CẢM ƠN!
Hướng dẫn về nhà
- Học thuộc định nghĩa, tính chất của hàm số bậc nhất.
Bài tập: 8, 9, 10, 13 trang 48 / SGK
Ôn lại toạ độ của một điểm,định nghĩa đồ thị cách xác định một điểm theo toạ độ cho trước,cách xác định toạ độ của một điểm trên đồ thị cho trước
Bài 10,13 SBT trang 58
30 (cm)
x
x
20 (cm)
* Hướng dẫn bài 10 SGK.
- Chiều dài ban đầu là 30(cm).
Sau khi bớt x(cm), chiều dài 30 - x (cm). Tương tự, sau khi bớt x(cm), chiều rộng là 20 - x(cm).
Công thức tính chu vi là: P = (dài + rộng) ? 2.
ĐẾN DỰ GIỜ TIẾT HỌC HÔM NAY.
Năm học : 2013 - 2014
Giáo viên : Hứa Văn Duy
Trường: PT DT N?i Trỳ THCS Van Quan
Kiểm tra
1. Nêu định nghĩa hàm số? Cho ví dụ.
2. Điền vào chỗ (.....)
Cho hàm số y = f(x) xác định x R
Với mọi x1, x2 bất kỳ thuộc R
- Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số y = f(x) ................. trên R
- Nếu x1 < x2 mà ................. thì hàm số y = f(x) nghịch biến trên R
Kiểm tra
1. Nêu định nghĩa hàm số? Cho ví dụ.
2. Điền vào chỗ (.....)
Cho hàm số y = f(x) xác định x R
Với mọi x1, x2 bất kỳ thuộc R
- Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số y = f(x) ................. trên R
- Nếu x1 < x2 mà ................. thì hàm số y = f(x) nghịch biến trên R
đồng biến
f(x1) > f(x2)
* Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x, và x được gọi là biến số.
tiết 21: hàm số bậc nhất
1. Khái niệm về hàm số bậc nhất
Sau t giờ ô tô đi được .........
Sau t giờ ô tô cách TT Hà Nội s = ..........
? s = 50t + 8 là hàm số
b) Định nghĩa:
y = ax + b
50 (km)
50 t (km)
50t + 8 (km)
58
108
158
208
...
và a ? 0.
bậc nhất
8km
+ b
(a ? 0)
a
b
= a
S = t +
y
x
a) Bài toán: Một xe chở khách đi từ bến xe phía nam Hà Nội vào Huế với vận tốc . Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu km? Biết rằng bến xe phía nam cách trung tâm Hà Nội
50 km/h
a km/h (a>0)
8 km.
b km (b?0)
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (a ? 0) (đã học ở lớp 7)
a) Bài toán:
b) Định nghĩa:
Bài tập 1: a) Trong cỏc hm s? sau hm s? no l hm s? b?c nh?t?
y = 1 - 5x
? y = 3x - 4
2y = 6x - 8
2y = 6x - 8
y = (m - 1) x -2
(m ? 1)
1. Khái niệm về hàm số bậc nhất
tiết 21: hàm số bậc nhất
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (đã học ở lớp 7)
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
a) Bài toán:
b) Định nghĩa:
Bài tập 1: b) Trong cỏc hm s? b?c nh?t sau, xỏc d?nh cỏc h? s? a, b
y = 2 x
2y = 6x - 8
? y = 3x - 4
2y = 6x - 8
y = 1 - 5x
-5
1
0
3
-4
Dạng y = ax + b a ?0
y = (m - 1) x -2
(m ? 1)
m -1
- 2
a
b
1. Khái niệm về hàm số bậc nhất
tiết 21: hàm số bậc nhất
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (đã học ở lớp 7)
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
1. Khái niệm về hàm số bậc nhất
Chứng minh rằng hàm số
y = f(x) = - 3x + 1 nghịch biến trên R
Chứng minh
- Hàm số y = f(x) = - 3x + 1 xác định ?x ? R
- Lấy x1, x2 bất kỳ ? R sao cho
x1 < x2 ? x1 - x2 < 0
? f(x1) = - 3x1 + 1
f(x2) = - 3x2 + 1
? f(x1) -f(x2) = - 3x1 + 1 + 3x2 - 1
= - 3(x1 - x2)
Vì - 3 < 0 ; x1 - x2 < 0
? f(x1) - f(x2) > 0 ? f(x1) > f(x2)
?y = f(x) = - 3x + 1 nghịch biến trên R
2. tính chất
* VD1: Xét hàm số y = - 3x + 1
- Hàm số y = - 3x + 1 xác định ?x ? R
- Hàm số y = - 3x + 1 nghịch biến trên R
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
b) Định nghĩa:
a) Bài toán: SGK trang 46
tiết 21: hàm số bậc nhất
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (đã học ở lớp 7)
Cho hàm số y = f(x) xác định x R
Với mọi x1, x2 bất kỳ thuộc R
- Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số y = f(x) đồng biến trên R
- Nếu x1 < x2 mà f(x1) > f(x2) thì hàm số y = f(x) nghịch biến trên R
a) Bài toán:
Ví dụ 1: Xét hàm số y = f(x) = -3x + 1
Hàm số xác định với mọi x thuộc R.
Hàm số nghịch biến với mọi x thuộc R.
Ví dụ 2: Xét hàm số y = f(x) = 3x + 1
? Chứng minh hàm số y = f(x) = 3x + 1
đồng biến với mọi x thuộc R ?
Hoạt động nhóm
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01
stop
1. Khái niệm về hàm số bậc nhất
2. tính chất
tiết 21: hàm số bậc nhất
b) Định nghĩa:
* Chú ý: Khi b = 0 hàm số bậc nhất có dạng y = ax (đã học ở lớp 7)
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
1. Khái niệm về hàm số bậc nhất
* VD2: Xét hàm số y = 3x + 1
Hàm số y = 3x + 1 xác định ?x ? R
Hàm số y = 3x +1 đồng biến trên R
1
Có a = 3 > 0
Chứng minh hàm số
y = f(x) = 3x +1 đồng biến trên R.
Chứng minh
2. tính chất
* VD1: Xét hàm số y = -3x + 1
Hàm số y = - 3x + 1 xác định ?x ? R
Hàm số y = - 3x + 1 nghịch biến trên R
1
Có a = - 3 < 0
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b trong đó a, b là các số cho trước và a ? 0
Chú ý: b = 0 hàm số có dạng y = ax (a ? 0)
b) Định nghĩa:
a) Bài toán: SGK trang 46
* Tính chất:
Hàm số bậc nhất y = ax + b xác định với mọi
giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên R khi a > 0
b) Nghịch biến trên R khi a < 0
- Hàm số y = f(x) = 3x + 1 xác định ?x ? R
- Lấy x1, x2 bất kỳ ? R sao cho
x1 < x2 ? x1 - x2 < 0
? f(x1) = 3x1 + 1
f(x2) = 3x2 + 1
? f(x1) -f(x2) = 3x1 + 1 - 3x2 - 1
= 3(x1 - x2)
Vì 3 > 0 ; x1 - x2 < 0
? f(x1) - f(x2) < 0 ? f(x1) < f(x2)
?y= f(x)= 3x +1 đồng biến trên R
-3
3
tiết 21: hàm số bậc nhất
a) Bài toán:
b) Định nghĩa:
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b (a ? 0) trong đó a, b là các số cho trước
Khi b = 0,
hàm số có dạng y = ax (a ? 0)
Chú ý:
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R
* Tổng quát:
và có tính chất sau:
a) Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a< 0
Bài tập 1: c) Trong cỏc hm s? b?c nh?t sau, hm s? no l d?ng bi?n, ngh?ch bi?n?
(m < 1)
(m > 1)
1. Khái niệm về hàm số bậc nhất
2. tính chất
tiết 21: hàm số bậc nhất
a) Bài toán:
b) Định nghĩa:
Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b (a ? 0) trong đó a, b là các số cho trước
Khi b = 0,
hàm số có dạng y = ax (a ? 0)
Chú ý:
Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R
* Tổng quát:
và có tính chất sau:
a) Đồng biến trên R, khi a > 0
b) Nghịch biến trên R, khi a< 0
Bài tập 2:
Cho hm s? b?c nh?t: y = (1 - 2m)x + 2.
Tỡm cỏc giỏ tr? c?a m d? hm s? :
D?ng bi?n
Ngh?ch bi?n
1. Khái niệm về hàm số bậc nhất
2. tính chất
Gi?i:
a) y = (1 - 2m)x + 2 đồng biến 1-2m > 0 m < 1/2
b) y = (1 - 2m)x + 2 nghịch biến 1-2m < 0 m > 1/2
tiết 21: hàm số bậc nhất
Em vui học tập
1
2
3
4
Ngô Bảo Châu sinh ngày 28 tháng 6 năm 1972 tại Hà Nội, là người Việt Nam đầu tiên giành 2 huy chương vàng Olympic Toán học Quốc tế.
Năm 2007, ông đồng thời làm việc tại Trường Đại học Paris XI, Orsay, Pháp và Viện nghiên cứu cao cấp Princeton, New Jersey, Hoa Kỳ. Trong năm 2008, ông công bố chứng minh Bổ đề cơ bản cho các đại số Lie hay còn gọi là Bổ đề cơ bản Langlands.
Với các công trình khoa học của mình, Giáo sư Ngô Bảo Châu được mời đọc báo cáo trong phiên họp toàn thể của Hội nghị toán học thế giới 2010 tổ chức ở Ấn Độ vào ngày 19 tháng 8 năm 2010. Tại lễ khai mạc, giáo sư đã được tặng thưởng Huy chương Fields.
Ông đã phát biểu khi nhận giải rằng "Đến một lúc nào đó, bạn làm toán vì bạn thích chứ không phải để chứng tỏ một cái gì nữa" hay vì đam mê giàu có hoặc sự nổi tiếng.
1. Hàm số nào sau đây không phải là hàm số bậc nhất ?
2- Hàm số bậc nhất y = (m – 2)x + 3 đồng biến khi
3- Với giá trị nào của k thì hàm số y = (k – 2)x + 3 nghịch biến?
4. Với giá trị nào của m thì hàm số là hàm số bậc nhất ?
a) Khái niệm:
Hàm số bậc nhất là hàm số được cho bởi công thức: y = ax + b
trong đó a, b là số cho trước và a ? 0
b) Chú ý: SGK/ 47
1. Khái niệm về hàm số bậc nhất:
2. Tính chất:
* TQ:
Hàm số bậc nhất y = ax + b xác định với
mọi giá trị của x thuộc R và có tính chất
sau:
Đồng biến trên R, khi a > 0.
b) Nghịch biến trên R, khi a < 0.
Hướng dẫn về nhà
- Nắm vững định nghĩa, tính chất của hàm số bậc nhất.
- Bài tập số 10; 11; 12 (SGK - Tr 48).
Bài tập số 6; 8 (SBT - Tr 57).
tiết 21: hàm số bậc nhất
BÀI GIẢNG ĐẾN ĐÂY KẾT THÚC
XIN CHÂN THÀNH CẢM ƠN!
Hướng dẫn về nhà
- Học thuộc định nghĩa, tính chất của hàm số bậc nhất.
Bài tập: 8, 9, 10, 13 trang 48 / SGK
Ôn lại toạ độ của một điểm,định nghĩa đồ thị cách xác định một điểm theo toạ độ cho trước,cách xác định toạ độ của một điểm trên đồ thị cho trước
Bài 10,13 SBT trang 58
30 (cm)
x
x
20 (cm)
* Hướng dẫn bài 10 SGK.
- Chiều dài ban đầu là 30(cm).
Sau khi bớt x(cm), chiều dài 30 - x (cm). Tương tự, sau khi bớt x(cm), chiều rộng là 20 - x(cm).
Công thức tính chu vi là: P = (dài + rộng) ? 2.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Cá Sấu Chúa
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)