Chương II. §2. Diện tích hình chữ nhật
Chia sẻ bởi Trần Hải Triều |
Ngày 04/05/2019 |
87
Chia sẻ tài liệu: Chương II. §2. Diện tích hình chữ nhật thuộc Hình học 8
Nội dung tài liệu:
A/ Môc tiªu
- HS n¾m v÷ng c«ng thøc tÝnh diÖn tÝch h×nh ch÷ nhËt, h×nh vu«ng, tam gi¸c vu«ng.
- HS hiÓu r»ng ®Ó chøng minh c¸c c«ng thøc ®ã cÇn vËn dông c¸c kiÕn thøc cña diÖn tÝch ®a gi¸c.
- HS vËn dông c¸c c«ng thøc ®· häc vµ c¸c tÝnh chÊt cña diÖn tÝch trong gi¶i to¸n.
B/ ChuÈn bÞ
§èi víi gi¸o viªn:
- So¹n bµi trªn m¸y tÝnh, thíc kÎ cã chia kho¶ng, compa, ªke, phÊn mµu.
- PhiÕu häc tËp cho c¸c nhãm.
§èi víi häc sinh:
- ¤n tËp c«ng thøc tÝnh diÖn tÝch h×nh ch÷ nhËt , h×nh vu«ng, tam gi¸c vu«ng ®· häc ë tiÓu häc.
Học sinh Trường THCS Nhân Bình trong giờ ra chơi
Giáo viên soạn : Trần Hải Triều
Giáo viên dạy : Trần Hải Triều
Trường THCS Nhân Bình
Quang cảnh Trường THCS Nhân Bình
Trường THCS Nhân Bình
Chào mừng các thầy cô giáo về dự hội giảng
Nhanh lên anh ơi
sắp vào lớp rồi đấy
Giáo viên soạn : Trần Hải Triều
Giáo viên dạy : Trần Hải Triều
Trường THCS Nhân Bình
C
D
E
B
A
B
3cm
O
x
y
450
600m2
1dm2
1. Khái niệm diện tích đa giác.
C
D
E
B
Hình 121
Xét các hình A, B, C, D, E vẽ trên lưới kẻ ô vuông(h.121), mỗi ô vuông là một đơn vị diện tích.
?1
a) Kiểm tra xem có phải diện tích hình A là diện tích 9 ô vuông, diện tích hình B cũng là diện tích 9 ô vuông hay không ?
b) Vì sao nói : Diện tích hình D gấp 4 lần diện tích hình C ?
c) So sánh diện tích hình C với hình E ?
C
D
E
B
Hình 121
Hình 121
C
D
E
B
Kiểm tra xem có phải diện tích hình A là diện tích 9 ô vuông,diện tích hình B cũng là diện tích 9 ô vuông hay không ?
Trả lời : Diện tích hình A là 9 ô vuông, diện tích hình B là 9 ô vuông
Ta nói : Diện tích hình A bằng diện tích hình B.
b) Vì sao ta nói : Diện tích hình D gấp 4 lần diện tích hình C ?
Trả lời : Vì số ô vuông của hình D gấp 4 lần số ô vuông của hình C.
c) So sánh diện tích hình C với diện tích hình E ?
Trả lời : Diện tích hình E gấp 4 lần diện tích hình C.
a, Nhận xét:
* Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó.
Hình 121
C
D
E
B
a, Nhận xét:
* Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó.
* Mỗi đa giác có một diện tích xác định. Diện tích đa giác là một số dương.
b, Tính chất của diện tích đa giác :
Tính chất 1.
Hai tam giác bằng nhau thì có diện tích bằng nhau.
Hình 121
C
D
E
B
B
C
D
E
A
1
2
4
3
Tính chất 2 :
Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó.
Nếu chọn hình vuông có cạnh bằng 1cm, 1dm, 1m ...,làm đơn vị đo diện tích thì đơn vị diện tích tương ứng là 1cm2, 1dm2, 1m2,...
Tính chất 3 :
1cm
1dm
1m
1cm2
1dm2
1m2
Hình vuông có cạnh dài 10m, 100m có diện tích tương ứng là 1a, 1ha. Hình vuông có cạnh dài 1km có diện tích tương ứng là 1km2 .
Diện tích đa giác được kí hiệu : S
A
B
C
D
M
N
O
P
Q
SABCD
SMNOPQ
2.Công thức tính diện tích hình chữ nhật.
Diện tích hình chữ nhật bằng tích hai kích thước của nó :
a
b
S = a.b
Lưu ý : a,b cùng đơn vị đo
1,2m
3m
Ví dụ 1 : Tính diện tích cái bảng hình chữ nhật biết hai kích thước của nó là : a = 1,2m ; b = 3m.
Diện tích của cái bảng là :
S = a.b = 1,2. 3 = 3,6 (m2)
Trả lời
Ví dụ 2 :
Tính diện tích của một thửa ruộng hình chữ nhật biết hai kích thước của nó là : a = 30m ; b = 50dm.
Đổi 50dm = 5m
Diện tích của thửa ruộng là :
S = a.b = 30 . 5 = 150 ( m2)
Trả lời
3. Công thức tính diện tích hình vuông, tam giác vuông.
?2
Từ công thức diện tích hình chữ nhật hãy suy ra công thức tính diện tích hình vuông,tam giác vuông.
Trả lời :
Công thức tính diện tích hình chữ nhật là :
S = a.b
Mà hình vuông là hình chữ nhật có hai cạnh kề bằng nhau (a = b) nên ta có :
S = a.b = a.a = a2
a
a
S = a2
Diện tích hình vuông bằng bình phương cạnh của nó :
a
b
1
2
Chia hình chữ nhật thành hai tam giác vuông bằng nhau :
=> S1 = S2 ( tính chất 1 diện tích đa giác)
Mà S = S1 + S2 ( tính chất 2 diện tích đa giác )
=> S = 2S1 = 2S2
=>
Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông :
Lưu ý : a,b cùng đơn vị đo
S = a.b
a
b
a
a
Diện tích hình vuông bằng bình phương cạnh của nó :
S = a2
Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông :
S = a.b
a
b
Ba tính chất của diện tích đa giác đã được vận dụng như thế nào khi chứng minh công thức tính diện tích tam giác vuông
Trả lời :
- Hai tam giác bằng nhau thì có diện tích bằng nhau.
- Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích những đa giác đó.
?3
Bài tập
Bài tập 1 :
Cho một hình chữ nhật có diện tích 20cm2 và hai kích thu?c của nú là x (cm) và y (cm).
Hãy điền vào ô trống trong bảng sau :
Trả lời :
Bài tập 2:
Điền dấu "x" vào ô Đ (đúng), S (sai) tương ứng với các khẳng định sau :
Tính chất của diện tích đa giác
1) Hai tam giác bằng nhau thì có diện tích bằng nhau.
2) Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó.
3) Nếu chọn hình vuông có cạnh bằng 1cm, 1dm, 1m, . . . . . , làm đơn vị đo diện tích thì đơn vị diện tích tương ứng là 1cm2,1dm2, 1m2, . . . . .
Diện tích hình vuông bằng bình phương cạnh của nó :
a
a
S = a2
Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông :
a
b
NhËn xÐt
* Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó.
* Mỗi đa giác có một diện tích xác định. Diện tích đó là một số dương.
Diện tích hình chữ nhật bằng tích hai kích thước của nó :
a
S = a.b
b
S = a.b
Công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông
Hướng dẫn về nhà :
- Nắm vững khái niệm diện tích đa giác, ba tính chất của diện tích đa giác, các công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông.
- Bài tập về nhà : 6;7;8;9 ( SGK - 118 )
Gợi ý bài tập 9 ( SGK - 119 )
A
B
C
D
E
x
12
Trân thành cảm ơn các thầy cô giáo
đã về dự tiết học này
- HS n¾m v÷ng c«ng thøc tÝnh diÖn tÝch h×nh ch÷ nhËt, h×nh vu«ng, tam gi¸c vu«ng.
- HS hiÓu r»ng ®Ó chøng minh c¸c c«ng thøc ®ã cÇn vËn dông c¸c kiÕn thøc cña diÖn tÝch ®a gi¸c.
- HS vËn dông c¸c c«ng thøc ®· häc vµ c¸c tÝnh chÊt cña diÖn tÝch trong gi¶i to¸n.
B/ ChuÈn bÞ
§èi víi gi¸o viªn:
- So¹n bµi trªn m¸y tÝnh, thíc kÎ cã chia kho¶ng, compa, ªke, phÊn mµu.
- PhiÕu häc tËp cho c¸c nhãm.
§èi víi häc sinh:
- ¤n tËp c«ng thøc tÝnh diÖn tÝch h×nh ch÷ nhËt , h×nh vu«ng, tam gi¸c vu«ng ®· häc ë tiÓu häc.
Học sinh Trường THCS Nhân Bình trong giờ ra chơi
Giáo viên soạn : Trần Hải Triều
Giáo viên dạy : Trần Hải Triều
Trường THCS Nhân Bình
Quang cảnh Trường THCS Nhân Bình
Trường THCS Nhân Bình
Chào mừng các thầy cô giáo về dự hội giảng
Nhanh lên anh ơi
sắp vào lớp rồi đấy
Giáo viên soạn : Trần Hải Triều
Giáo viên dạy : Trần Hải Triều
Trường THCS Nhân Bình
C
D
E
B
A
B
3cm
O
x
y
450
600m2
1dm2
1. Khái niệm diện tích đa giác.
C
D
E
B
Hình 121
Xét các hình A, B, C, D, E vẽ trên lưới kẻ ô vuông(h.121), mỗi ô vuông là một đơn vị diện tích.
?1
a) Kiểm tra xem có phải diện tích hình A là diện tích 9 ô vuông, diện tích hình B cũng là diện tích 9 ô vuông hay không ?
b) Vì sao nói : Diện tích hình D gấp 4 lần diện tích hình C ?
c) So sánh diện tích hình C với hình E ?
C
D
E
B
Hình 121
Hình 121
C
D
E
B
Kiểm tra xem có phải diện tích hình A là diện tích 9 ô vuông,diện tích hình B cũng là diện tích 9 ô vuông hay không ?
Trả lời : Diện tích hình A là 9 ô vuông, diện tích hình B là 9 ô vuông
Ta nói : Diện tích hình A bằng diện tích hình B.
b) Vì sao ta nói : Diện tích hình D gấp 4 lần diện tích hình C ?
Trả lời : Vì số ô vuông của hình D gấp 4 lần số ô vuông của hình C.
c) So sánh diện tích hình C với diện tích hình E ?
Trả lời : Diện tích hình E gấp 4 lần diện tích hình C.
a, Nhận xét:
* Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó.
Hình 121
C
D
E
B
a, Nhận xét:
* Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó.
* Mỗi đa giác có một diện tích xác định. Diện tích đa giác là một số dương.
b, Tính chất của diện tích đa giác :
Tính chất 1.
Hai tam giác bằng nhau thì có diện tích bằng nhau.
Hình 121
C
D
E
B
B
C
D
E
A
1
2
4
3
Tính chất 2 :
Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó.
Nếu chọn hình vuông có cạnh bằng 1cm, 1dm, 1m ...,làm đơn vị đo diện tích thì đơn vị diện tích tương ứng là 1cm2, 1dm2, 1m2,...
Tính chất 3 :
1cm
1dm
1m
1cm2
1dm2
1m2
Hình vuông có cạnh dài 10m, 100m có diện tích tương ứng là 1a, 1ha. Hình vuông có cạnh dài 1km có diện tích tương ứng là 1km2 .
Diện tích đa giác được kí hiệu : S
A
B
C
D
M
N
O
P
Q
SABCD
SMNOPQ
2.Công thức tính diện tích hình chữ nhật.
Diện tích hình chữ nhật bằng tích hai kích thước của nó :
a
b
S = a.b
Lưu ý : a,b cùng đơn vị đo
1,2m
3m
Ví dụ 1 : Tính diện tích cái bảng hình chữ nhật biết hai kích thước của nó là : a = 1,2m ; b = 3m.
Diện tích của cái bảng là :
S = a.b = 1,2. 3 = 3,6 (m2)
Trả lời
Ví dụ 2 :
Tính diện tích của một thửa ruộng hình chữ nhật biết hai kích thước của nó là : a = 30m ; b = 50dm.
Đổi 50dm = 5m
Diện tích của thửa ruộng là :
S = a.b = 30 . 5 = 150 ( m2)
Trả lời
3. Công thức tính diện tích hình vuông, tam giác vuông.
?2
Từ công thức diện tích hình chữ nhật hãy suy ra công thức tính diện tích hình vuông,tam giác vuông.
Trả lời :
Công thức tính diện tích hình chữ nhật là :
S = a.b
Mà hình vuông là hình chữ nhật có hai cạnh kề bằng nhau (a = b) nên ta có :
S = a.b = a.a = a2
a
a
S = a2
Diện tích hình vuông bằng bình phương cạnh của nó :
a
b
1
2
Chia hình chữ nhật thành hai tam giác vuông bằng nhau :
=> S1 = S2 ( tính chất 1 diện tích đa giác)
Mà S = S1 + S2 ( tính chất 2 diện tích đa giác )
=> S = 2S1 = 2S2
=>
Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông :
Lưu ý : a,b cùng đơn vị đo
S = a.b
a
b
a
a
Diện tích hình vuông bằng bình phương cạnh của nó :
S = a2
Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông :
S = a.b
a
b
Ba tính chất của diện tích đa giác đã được vận dụng như thế nào khi chứng minh công thức tính diện tích tam giác vuông
Trả lời :
- Hai tam giác bằng nhau thì có diện tích bằng nhau.
- Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích những đa giác đó.
?3
Bài tập
Bài tập 1 :
Cho một hình chữ nhật có diện tích 20cm2 và hai kích thu?c của nú là x (cm) và y (cm).
Hãy điền vào ô trống trong bảng sau :
Trả lời :
Bài tập 2:
Điền dấu "x" vào ô Đ (đúng), S (sai) tương ứng với các khẳng định sau :
Tính chất của diện tích đa giác
1) Hai tam giác bằng nhau thì có diện tích bằng nhau.
2) Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của nó bằng tổng diện tích của những đa giác đó.
3) Nếu chọn hình vuông có cạnh bằng 1cm, 1dm, 1m, . . . . . , làm đơn vị đo diện tích thì đơn vị diện tích tương ứng là 1cm2,1dm2, 1m2, . . . . .
Diện tích hình vuông bằng bình phương cạnh của nó :
a
a
S = a2
Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông :
a
b
NhËn xÐt
* Số đo phần mặt phẳng giới hạn bởi một đa giác được gọi là diện tích đa giác đó.
* Mỗi đa giác có một diện tích xác định. Diện tích đó là một số dương.
Diện tích hình chữ nhật bằng tích hai kích thước của nó :
a
S = a.b
b
S = a.b
Công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông
Hướng dẫn về nhà :
- Nắm vững khái niệm diện tích đa giác, ba tính chất của diện tích đa giác, các công thức tính diện tích hình chữ nhật, hình vuông, tam giác vuông.
- Bài tập về nhà : 6;7;8;9 ( SGK - 118 )
Gợi ý bài tập 9 ( SGK - 119 )
A
B
C
D
E
x
12
Trân thành cảm ơn các thầy cô giáo
đã về dự tiết học này
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trần Hải Triều
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)