Chương II. §1. Nhắc lại và bổ sung các khái niệm về hàm số

Chia sẻ bởi Nguyễn Ngọc Trường | Ngày 05/05/2019 | 88

Chia sẻ tài liệu: Chương II. §1. Nhắc lại và bổ sung các khái niệm về hàm số thuộc Đại số 9

Nội dung tài liệu:

Bài soạn toán 9

Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số




Người thực hiện: Nguyễn Ngọc Trường
Phòng giáo dục Thạch Thất
Trường THCS Bình Phú

Chương II: Hàm số bậc nhất

Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
Bài soạn toán 9
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
I/ Khái niệm hàm số
1- Khái niệm
? * Khi x thay đổi mà y luôn nh?n một giá tr? không đổi thì hàm số y được gọi là hàm hằng.
VD: y= 2
*Ký hiệu: y= f(x), y=g(x), y=h(x),...
2- Các cách cho hàm số:
a) Bằng bảng
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
y có là hàm số của x không ? Vì sao?
?
2- Các cách cho hàm số:
a) Bằng bảng
b) Bằng công thức
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
. . .
? * Khi hàm số được cho bằng công thức y=f(x), thì biến số x chỉ lấy những giá trị mà tại đó f(x) xác định.
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
? *Giá trị hàm số y=f(x) tại x=a là f(a)
II- Đồ thị hàm số
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
Giải
a)
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
b) Đồ thị hàm số y = 2x đi qua 2 điểm O(0,0); A(1,2)
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
? * Đồ thị hàm số y = f(x) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x;f(x)) trên mặt phẳng toạ độ.
III- hàm số đồng biến, nghịch biến
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
Giải
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
(y = 2x + 1 và y = -2x + 1 xác định với ? x?R)
Tổng quát
? Nói cách khác,cho hàm số y=f(x)xác định ?x? R.
với x1, x2 bất kỳ thuộc R:
Nếu x1Nếu x1f(x2) thì hàm số y=f(x) nghịch biến trên R
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số












4- Hàm số đồng biến nghịch biến
Cho hàm số y=f(x) xác định với mọi giá trị của x?R Với x1, x2 bất kỳ thuộc R: Nếu x1f(x2) thì hàm số y=f(x) nghịch biến trên R
1- Khái niệm hàm số:
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x, và x được gọi là biến số.
3- Đồ thị hàm số:
Tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x;f(x)) trên mặt phẳng toạ độ được gọi là đồ thị của hàm số
y = f(x).
2- Các cách cho hàm số:
Bằng bảng, bằng công thức,.
Cho hàm số y = f(x) = 3x
a) điền số thích hợp vào ô trống trong bảng sau:




b) Vẽ đồ thị hàm số trên




c) Hãy khoanh tròn chữ cái trước câu trả lời đúng.
Hàm số đã cho là hàm số:
A. đồng biến vì khi giá trị của x tăng lên thì giá trị tương ứng f(x) cũng tăng lên.
B. Nghịch biến vì khi giá trị của x tăng lên thì giá trị tương ứng f(x) giảm đi.
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
Phiếu học tập
Cho hàm số y=f(x) =3x
a)Điền vào ô trống trong bảng sau



b) Vẽ đồ thị hàm số trên





c) A
Tiết 19: Nhắc lại và bổ sung các khái niệm về hàm số
Tập thể lớp 9A
Xin kính chúc sức khoẻ các vị giám khảo!
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Ngọc Trường
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)