Chương II. §1. Đa giác. Đa giác đều

Chia sẻ bởi Đỗ Thị Phan Hà | Ngày 04/05/2019 | 49

Chia sẻ tài liệu: Chương II. §1. Đa giác. Đa giác đều thuộc Hình học 8

Nội dung tài liệu:

1
HÌNH HỌC 8
NHIỆT LIỆT CHÀO MỪNG QUÝ THẦY CÔ GIÁO VỀ DỰ
2
Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.
Định nghĩa tứ giác ABCD?
Định nghĩa tứ giác lồi?
Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác.
KIỂM TRA BÀI CŨ
3
Không là tứ giác
Là tứ giác
Là tứ giác
– Tứ giác lồi
4
Chương II
Đa giác - Diện tích đa giác
Đa giác – Đa giác đều
DiÖn tÝch h×nh nhËt
DiÖn tÝch tam gi¸c
DiÖn tÝch h×nh thang
DiÖn tÝch h×nh thoi
DiÖn tÝch ®a gi¸c
5
* Khái niệm: Đa giác ABCDE là hình gồm năm đoạn thẳng AB, BC, CD, DE, EA trong đó bất kỳ hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng.
Mỗi hình 112; 113; 114; 115; 116; 117 là một đa giác
6
* Khái niệm: Đa giác ABCDE là hình gồm năm đoạn thẳng AB, BC, CD, DE, EA trong đó bất kỳ hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng.
* Các đoạn thẳng AB, BC, CD, DE, EA gọi là các cạnh của đa giác
* Các điểm A, B, C, D, E gọi là các đỉnh của đa giác
* Các điểm A, B, C, D, E gọi là ………………………….
* Các đoạn thẳng AB, BC, CD, DE, EA gọi là ……………
7
?1 . Hình gồm năm đoạn thẳng AB, BC, CD, DE, EA ở hình 118 có phải là đa giác không? Vì sao?
8
9
Định nghĩa: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kỳ cạnh nào của đa giác đó.
10
?2 . Tại sao các đa giác ở hình 112; 113; 114 không phải là đa giác lồi?
?2
11
Chú ý: Từ nay, khi nói đến đa giác mà không chú thích gì thêm,
ta hiểu đó là đa giác lồi.
12
ĐA GIÁC
Khái niệm đa giác
Định nghĩa đa giác lồi
13
A
a
Quan sát đa giác ABCDEG ở hình 119 rồi điền vào chỗ trống trong các câu sau:
?3
Đa giác ABCDEG có:
Các đỉnh là các điểm: A, B, .….………..
Các đỉnh kề nhau là: A và B, hoặc B và C, hoặc ………………………..……………………….…
Các cạnh là các đoạn thẳng: AB, BC,
…………………
Các đường chéo là các đoạn thẳng nối hai đỉnh không kề nhau AC, CG, ………………………….
Các góc là: …………
- Các điểm nằm trong đa giác (các điểm trong của đa giác) là: M, N, ……
- Các điểm nằm ngoài đa giác (các điểm ngoài của đa giác) là: Q, ……
C, D, E, G
C và D, hoặc D và E, hoặc E và G, hoặc G và A
CD, DE, EG, GA
AD, AE, BG, BE, BD,EC, DG
P
R
14
* Đa giác có n đỉnh (n ≥ 3) được gọi là hình n-giác hay hình n cạnh. Với n = 3; 4; 5; 6; 8 ta quen gọi là
tam giác,
lục giác,
tứ giác,
ngũ giác,
bát giác.
* Với n = 7; 9; 10; … ta gọi là hình 7 cạnh, hình 9 cạnh, hình 10 cạnh, …
15
Hai hình trên có đặc điểm chung nào?
- Tất cả các cạnh bằng nhau.
- Tất cả các góc bằng nhau.
Những đa giác đều
16
Định nghĩa: Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau.
17
Cho ví dụ về đa giác không đều trong mỗi trường hợp sau:
a) Có tất cả các cạnh đều bằng nhau
b) Có tất cả các góc đều bằng nhau
Hình thoi
Hình chữ nhật
Bài 2 (SGK/115)
18
Cách vẽ lục giác đều:
D
O
A
B
C
E
F
19
?4
Tam giác đều
Tứ giác đều
Ngũ giác đều
Lục giác đều
Hãy vẽ các trục đối xứng và tâm đối xứng của các hình trên (nếu có).
O
O
20
Một số hình ảnh đa giác trong thực tế
21
1
2
3
5
6
3
n
n - 3
n - 2
Bài 4 (SGK/115): Điền số thích hợp vào các ô trống trong bảng sau:
22
Vì tổng số đo các góc của n-giác bằng (n-2).1800
nên số đo mỗi góc của n-giác đều là:
Số đo mỗi góc của ngũ giác đều là:
Số đo mỗi góc của lục giác đều là:
Bài 5 (SGK/115):
Tính số đo mỗi góc của ngũ giác đều, lục giác đều, n-giác đều.
Giải
23
ĐA GIÁC
0
24
* Nắm chắc khái niệm đa giác, định nghĩa đa giác lồi; định nghĩa đa giác đều, công thức tính tổng các góc của đa giác, công thức tính mỗi góc của đa giác đều.
* Làm các bài tập: 1, 3 (SGK/115), bài 2, 3, 5 (SBT/155)
* Soạn bài: “Diện tích hình chữ nhật”.
* Ôn tập công thức tính diện tích: tam giác, hình chữ nhật, hình vuông.
HƯỚNG DẪN VỀ NHÀ
25
HƯỚNG DẪN
A§SSSD
Bài 3: Cho hình thoi ABCD có góc A bằng 600. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng đa giác EBFGDH là lục giác đều.
26
Cách vẽ ngũ giác đều:
Q
O
R
A
P
M
B
C
D
E
N
27
TIẾT HỌC KẾT THÚC
THẦY CÔ ĐẾN DỰ
XIN CHÂN THÀNH CẢM ƠN
THỰC HIỆN THÁNG 11 – 2011
28
r
O
D
A
F
B
C
E
C�ch v? l?c gi�c d?u
B
A
C
D
E
F
O
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Đỗ Thị Phan Hà
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)