Chương I. §3. Hình thang cân
Chia sẻ bởi Đặng Thị Tú |
Ngày 04/05/2019 |
54
Chia sẻ tài liệu: Chương I. §3. Hình thang cân thuộc Hình học 8
Nội dung tài liệu:
Tiết 3 : hình thang cân
Kiểm tra bài cũ
1. Nêu định nghĩa hình thang, hình thang vuông?
Bài tập 1: Tìm x, y trong hình thang ABCD?
Phát biểu các nhận xét về hình thang?
Bài tập 2: Cho hình thang ABCD có AB//CD có . Tính các góc của hình thang
Bài tập 3: Tứ giác ABCD có AB=BC và AC là tia phân giác của góc A. Chứng minh rằng ABCD là hình thang
1. Định nghĩa
Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
Tiết 3: Đ3. hình thang cân
Cách vẽ hình thang cân:
d
A
B
C
D
Cách 1:
Cách 2:
D
C
A
B
a)
b)
c)
d)
Tứ giác ABCD có:
(gt)
Mà hai góc A và D ở vị trí trong cùng phía => AB//DC.
mà
=> ABCD là hình thang cân
=> ABCD là hình thang
Trong hình thang cân hai góc đối bù nhau
2. Tính chất
Bài toán1: Cmr trong hình thang cân, hai cạnh bên bằng nhau?
Chứng minh
Xét hai trường hợp sau:
1, Nếu AD cắt BC ở O
O
1
1
2
2
Mặt khác:
Nên
Từ (1) và (2) suy ra: OD – OA = OC – OD.
Hay: AD = BC
2. Nếu AD//BC thì AD = BC (vì AB//CD)
Định lí1: Trong hình thang cân hai cạnh bên bằng nhau
2. Tính chất
Bài toán 2: Chứng minh rằng trong hình thang cân, hai đường chéo bằng nhau.
Chứng minh
Cạnh AB chung
(vì ABCD là hình thang cân)
AD = BC (cạnh bên của hình thang cân)
(cặp cạnh tương ứng)
Định lí 2: Trong hình thang cân, hai đường chéo bằng nhau.
Tiết 3: hình thang cân
Hình thang có hai đường chéo bằng nhau có phải là hình thang
cân hay không?
A
B
Hình thang có hai đường chéo bằng nhau có phải là hình thang
cân hay không?
E
Hình thang có hai đường chéo bằng nhau là hình thang cân
1
1
Nội dung bài 18-sgk
3. Dấu hiệu nhận biết hình thang cân
2. Hình thang có hai đường chéo bằng nhau là hình thang cân.
1. Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
KiẾN THỨC CẦN GHI NHỚ
Định nghĩa:
Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
Tính chất của hình thang cân:
Có hình thang cân:
Hai canh bên bằng nhau
Hai góc đối bù nhau nhau
Hai đường chéo bằng nhau
Dấu hiệu nhận biết hình thang cân (các cách chứng minh hình thang cân)
2. Hình thang có hai đường chéo bằng nhau là hình thang cân.
1. Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
Bài tập tại lớp: Bài 12 trang 74 SGK
Cho hình thang cân ABCD (AB//CD, ABChứng minh
AD = BC (tính chất hình thang cân)
Tiết 3: hình thang cân
Hướng dẫn học ở nhà
Học thuộc định nghĩa, tính chất của hình thang cân.
Làm các bài tập: 11,13,14,15,trang 74,75 SGK.
1. Định nghĩa
? 2
Xét tứ giác EFGH có:
GF không song song với HE
Chứng minh tương tự ta cũng có
GH không song song với FE
Vậy EFGH không phải là hình thang
Tiết 3: hình thang cân
1. Định nghĩa
? 2
Xét tứ giác MNIK có:
Mà hai góc K và M có vị trí trong cùng phía đối với hai cạnh KI và MN. Nên KI//MN. (1)
Từ (1) và (2) suy ra: MNIK là hình thang cân
Tiết 3: hình thang cân
1. Định nghĩa
? 2
Xét tứ giác PQST có:
PT//QS ( Vì cùng vuông góc với PQ)
Mà
Do đó tứ giác PQST là hình thang cân
Tiết 3: hình thang cân
Kiểm tra bài cũ
1. Nêu định nghĩa hình thang, hình thang vuông?
Bài tập 1: Tìm x, y trong hình thang ABCD?
Phát biểu các nhận xét về hình thang?
Bài tập 2: Cho hình thang ABCD có AB//CD có . Tính các góc của hình thang
Bài tập 3: Tứ giác ABCD có AB=BC và AC là tia phân giác của góc A. Chứng minh rằng ABCD là hình thang
1. Định nghĩa
Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
Tiết 3: Đ3. hình thang cân
Cách vẽ hình thang cân:
d
A
B
C
D
Cách 1:
Cách 2:
D
C
A
B
a)
b)
c)
d)
Tứ giác ABCD có:
(gt)
Mà hai góc A và D ở vị trí trong cùng phía => AB//DC.
mà
=> ABCD là hình thang cân
=> ABCD là hình thang
Trong hình thang cân hai góc đối bù nhau
2. Tính chất
Bài toán1: Cmr trong hình thang cân, hai cạnh bên bằng nhau?
Chứng minh
Xét hai trường hợp sau:
1, Nếu AD cắt BC ở O
O
1
1
2
2
Mặt khác:
Nên
Từ (1) và (2) suy ra: OD – OA = OC – OD.
Hay: AD = BC
2. Nếu AD//BC thì AD = BC (vì AB//CD)
Định lí1: Trong hình thang cân hai cạnh bên bằng nhau
2. Tính chất
Bài toán 2: Chứng minh rằng trong hình thang cân, hai đường chéo bằng nhau.
Chứng minh
Cạnh AB chung
(vì ABCD là hình thang cân)
AD = BC (cạnh bên của hình thang cân)
(cặp cạnh tương ứng)
Định lí 2: Trong hình thang cân, hai đường chéo bằng nhau.
Tiết 3: hình thang cân
Hình thang có hai đường chéo bằng nhau có phải là hình thang
cân hay không?
A
B
Hình thang có hai đường chéo bằng nhau có phải là hình thang
cân hay không?
E
Hình thang có hai đường chéo bằng nhau là hình thang cân
1
1
Nội dung bài 18-sgk
3. Dấu hiệu nhận biết hình thang cân
2. Hình thang có hai đường chéo bằng nhau là hình thang cân.
1. Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
KiẾN THỨC CẦN GHI NHỚ
Định nghĩa:
Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
Tính chất của hình thang cân:
Có hình thang cân:
Hai canh bên bằng nhau
Hai góc đối bù nhau nhau
Hai đường chéo bằng nhau
Dấu hiệu nhận biết hình thang cân (các cách chứng minh hình thang cân)
2. Hình thang có hai đường chéo bằng nhau là hình thang cân.
1. Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
Bài tập tại lớp: Bài 12 trang 74 SGK
Cho hình thang cân ABCD (AB//CD, AB
AD = BC (tính chất hình thang cân)
Tiết 3: hình thang cân
Hướng dẫn học ở nhà
Học thuộc định nghĩa, tính chất của hình thang cân.
Làm các bài tập: 11,13,14,15,trang 74,75 SGK.
1. Định nghĩa
? 2
Xét tứ giác EFGH có:
GF không song song với HE
Chứng minh tương tự ta cũng có
GH không song song với FE
Vậy EFGH không phải là hình thang
Tiết 3: hình thang cân
1. Định nghĩa
? 2
Xét tứ giác MNIK có:
Mà hai góc K và M có vị trí trong cùng phía đối với hai cạnh KI và MN. Nên KI//MN. (1)
Từ (1) và (2) suy ra: MNIK là hình thang cân
Tiết 3: hình thang cân
1. Định nghĩa
? 2
Xét tứ giác PQST có:
PT//QS ( Vì cùng vuông góc với PQ)
Mà
Do đó tứ giác PQST là hình thang cân
Tiết 3: hình thang cân
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đặng Thị Tú
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)